Journal of Electroceramics

, Volume 29, Issue 4, pp 270–276 | Cite as

Effect of annealing temperature on the electrostrictive properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 thin films

  • X. Liu
  • X. J. Zheng
  • J. Y. Liu
  • K. S. Zhou
  • D. H. Huang


0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 (NBT-BT6) thin films were fabricated by metal-organic decomposition (MOD) at the different annealing temperatures. Based on the electrostrictive effect and converse piezoelectric effect, the phenomenological approach is provided to characterize the electrostrictive properties of the perovskite relaxor, and it is used to determine the effective electrostriction coefficients \( Q_{33}^{\mathrm{eff}} \) and electrostrictive strains \( {S_3} \) of NBT-BT6 thin films annealed at the range of 650–800 °C. After the microstructure, ferroelectric, dielectric and piezoelectric properties of the thin films were determined, the maximum values of \( Q_{33}^{\mathrm{eff}} \) and \( {S_3} \) of NBT-BT6 thin film annealed at 750 °C are respectively determined as 0.0289 m4/C2 and 0.26 % under the bipolar driving field of 391 kV/cm. They are strongly influenced by annealing temperature due to the bismuth evaporation and crystallization of perovskite phase, and the enhanced electrostrictive properties could make NBT-based thin film a promising candidate to the design and application of stacked actuators, microangle-adjusting devices, and oil pressure servo valves.


0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 Thin films Piezoelectricity Ferroelectricity Electrostrictive properties 



This work was supported by PCSIRT (IRT1080), NNSF of China (10825209 and 50872117), Changjiang Scholar Incentive Program ([2009]17), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Shanghai Nano Special Foundation (11 nm0502600), and the Innovation Found Project for Graduate Student of Hunan Province (CX2011B258).


  1. 1.
    Q. Xu, X.L. Chen, W. Chen, B.H. Kim, S.L. Xu, M. Chen, J. Electroceram. 21, 617 (2008)CrossRefGoogle Scholar
  2. 2.
    D.Z. Zhang, X.J. Zheng, X. Feng, T. Zhang, J. Alloys Compd. 504, 129 (2010)CrossRefGoogle Scholar
  3. 3.
    A.L. Kholkin, E.K. Akdogan, A. Safari, P.F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001)CrossRefGoogle Scholar
  4. 4.
    A.L. Kholkin, C. Wutchrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996)CrossRefGoogle Scholar
  5. 5.
    S.E. Park, T.R. Shrout, P. Bridenbaugh, J. Rottenberg, G.M. Loiacono, Ferroelectrics 207, 519 (1998)CrossRefGoogle Scholar
  6. 6.
    R.E. Newnham, V. Sundar, R. Yimnirun, J. Su, Q.M. Zhang, J. Phys. Chem. B 101, 10141 (1997)CrossRefGoogle Scholar
  7. 7.
    J. Zhao, Q.M. Zhang, N. Kim, T. Shrout, Jpn. J. Appl. Phys. 34, 5658 (1995)CrossRefGoogle Scholar
  8. 8.
    S.V. Kalinin, D.A. Bonnell, Phys. Rev. B 65, 125408 (2002)CrossRefGoogle Scholar
  9. 9.
    H. Wen, X. Wang, C. Zhong, L. Shu, L. Li, Appl. Phys. Lett. 90, 202902 (2007)CrossRefGoogle Scholar
  10. 10.
    C. Ang, Z. Yu, Adv. Mater. 18, 103 (2006)CrossRefGoogle Scholar
  11. 11.
    S.M. Pilgrim, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 47, 861 (2000)CrossRefGoogle Scholar
  12. 12.
    Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Appl. Phys. Lett. 92, 012907 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Jpn. J. Appl. Phys. 40, 5572 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Moert, G. Schindler, T. Mikolajick, N. Nagel, W. Hartner, C. Dehm, H. Kohlstedt, R. Waser, Appl. Surf. Sci. 249, 23 (2005)CrossRefGoogle Scholar
  15. 15.
    H.Y. He, J.F. Huang, L.Y. Cao, Mat. Sci. Eng. B 133, 132 (2006)CrossRefGoogle Scholar
  16. 16.
    C.H. Yang, Z. Wang, H.Y. Xu, Z.H. Sun, F.Y. Jiang, J.R. Han, J. Cryst. Growth 262, 304 (2004)CrossRefGoogle Scholar
  17. 17.
    X.L. Zhong, J.B. Wang, Y.C. Zhou, J.J. Liu, X.J. Zheng, J. Cryst. Growth 277, 233 (2005)CrossRefGoogle Scholar
  18. 18.
    J.B. Xu, Y. Liu, R.L. Withers, F. Brink, H. Yang, M. Wang, J. Appl. Phys. 104, 116101 (2008)CrossRefGoogle Scholar
  19. 19.
    W. Gong, J.F. Li, X.C. Chu, Z.L. Gui, L.T. Li, Acta Mater. 52, 2787 (2004)CrossRefGoogle Scholar
  20. 20.
    G.Y. Xu, J.S. Wen, C. Stock, P.M. Gehring, Nat. Mater. 7, 562 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Guo, D. Akai, K. Sawada, M. Ishida, M. Gu, Solid State Communications 149, 14 (2009)CrossRefGoogle Scholar
  22. 22.
    Y.P. Guo, M.Y. Gu, H.S. Luo, Y. Liu, R.L. Withers, Phys. Rev. B 83, 054118 (2011)CrossRefGoogle Scholar
  23. 23.
    S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • X. Liu
    • 1
  • X. J. Zheng
    • 1
    • 2
  • J. Y. Liu
    • 1
  • K. S. Zhou
    • 3
  • D. H. Huang
    • 3
  1. 1.Faculty of Materials, Optoelectronics and PhysicsXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringUniversity of Shanghai for Science & TechnologyShanghaiPeople’s Republic of China
  3. 3.School of Physics Science and TechnologyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations