Skip to main content
Log in

Effect of annealing temperature on the electrostrictive properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 thin films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 (NBT-BT6) thin films were fabricated by metal-organic decomposition (MOD) at the different annealing temperatures. Based on the electrostrictive effect and converse piezoelectric effect, the phenomenological approach is provided to characterize the electrostrictive properties of the perovskite relaxor, and it is used to determine the effective electrostriction coefficients \( Q_{33}^{\mathrm{eff}} \) and electrostrictive strains \( {S_3} \) of NBT-BT6 thin films annealed at the range of 650–800 °C. After the microstructure, ferroelectric, dielectric and piezoelectric properties of the thin films were determined, the maximum values of \( Q_{33}^{\mathrm{eff}} \) and \( {S_3} \) of NBT-BT6 thin film annealed at 750 °C are respectively determined as 0.0289 m4/C2 and 0.26 % under the bipolar driving field of 391 kV/cm. They are strongly influenced by annealing temperature due to the bismuth evaporation and crystallization of perovskite phase, and the enhanced electrostrictive properties could make NBT-based thin film a promising candidate to the design and application of stacked actuators, microangle-adjusting devices, and oil pressure servo valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Xu, X.L. Chen, W. Chen, B.H. Kim, S.L. Xu, M. Chen, J. Electroceram. 21, 617 (2008)

    Article  CAS  Google Scholar 

  2. D.Z. Zhang, X.J. Zheng, X. Feng, T. Zhang, J. Alloys Compd. 504, 129 (2010)

    Article  CAS  Google Scholar 

  3. A.L. Kholkin, E.K. Akdogan, A. Safari, P.F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001)

    Article  CAS  Google Scholar 

  4. A.L. Kholkin, C. Wutchrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996)

    Article  CAS  Google Scholar 

  5. S.E. Park, T.R. Shrout, P. Bridenbaugh, J. Rottenberg, G.M. Loiacono, Ferroelectrics 207, 519 (1998)

    Article  CAS  Google Scholar 

  6. R.E. Newnham, V. Sundar, R. Yimnirun, J. Su, Q.M. Zhang, J. Phys. Chem. B 101, 10141 (1997)

    Article  CAS  Google Scholar 

  7. J. Zhao, Q.M. Zhang, N. Kim, T. Shrout, Jpn. J. Appl. Phys. 34, 5658 (1995)

    Article  CAS  Google Scholar 

  8. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B 65, 125408 (2002)

    Article  Google Scholar 

  9. H. Wen, X. Wang, C. Zhong, L. Shu, L. Li, Appl. Phys. Lett. 90, 202902 (2007)

    Article  Google Scholar 

  10. C. Ang, Z. Yu, Adv. Mater. 18, 103 (2006)

    Article  CAS  Google Scholar 

  11. S.M. Pilgrim, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 47, 861 (2000)

    Article  CAS  Google Scholar 

  12. Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Appl. Phys. Lett. 92, 012907 (2008)

    Article  Google Scholar 

  13. M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Jpn. J. Appl. Phys. 40, 5572 (2001)

    Article  CAS  Google Scholar 

  14. M. Moert, G. Schindler, T. Mikolajick, N. Nagel, W. Hartner, C. Dehm, H. Kohlstedt, R. Waser, Appl. Surf. Sci. 249, 23 (2005)

    Article  CAS  Google Scholar 

  15. H.Y. He, J.F. Huang, L.Y. Cao, Mat. Sci. Eng. B 133, 132 (2006)

    Article  CAS  Google Scholar 

  16. C.H. Yang, Z. Wang, H.Y. Xu, Z.H. Sun, F.Y. Jiang, J.R. Han, J. Cryst. Growth 262, 304 (2004)

    Article  CAS  Google Scholar 

  17. X.L. Zhong, J.B. Wang, Y.C. Zhou, J.J. Liu, X.J. Zheng, J. Cryst. Growth 277, 233 (2005)

    Article  CAS  Google Scholar 

  18. J.B. Xu, Y. Liu, R.L. Withers, F. Brink, H. Yang, M. Wang, J. Appl. Phys. 104, 116101 (2008)

    Article  Google Scholar 

  19. W. Gong, J.F. Li, X.C. Chu, Z.L. Gui, L.T. Li, Acta Mater. 52, 2787 (2004)

    Article  CAS  Google Scholar 

  20. G.Y. Xu, J.S. Wen, C. Stock, P.M. Gehring, Nat. Mater. 7, 562 (2008)

    Article  CAS  Google Scholar 

  21. Y. Guo, D. Akai, K. Sawada, M. Ishida, M. Gu, Solid State Communications 149, 14 (2009)

    Article  CAS  Google Scholar 

  22. Y.P. Guo, M.Y. Gu, H.S. Luo, Y. Liu, R.L. Withers, Phys. Rev. B 83, 054118 (2011)

    Article  Google Scholar 

  23. S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PCSIRT (IRT1080), NNSF of China (10825209 and 50872117), Changjiang Scholar Incentive Program ([2009]17), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Shanghai Nano Special Foundation (11 nm0502600), and the Innovation Found Project for Graduate Student of Hunan Province (CX2011B258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zheng, X.J., Liu, J.Y. et al. Effect of annealing temperature on the electrostrictive properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 thin films. J Electroceram 29, 270–276 (2012). https://doi.org/10.1007/s10832-012-9771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9771-y

Keywords

Navigation