Advertisement

Journal of Electroceramics

, Volume 29, Issue 3, pp 179–182 | Cite as

Structural and dielectric properties of (1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3 ceramics with the morphotropic phase boundary composition

  • Qiang Zhang
  • Mingxue Jiang
  • Zhenrong Li
Article

Abstract

(1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3 (BNT-xPT, 0.42 ≤ x ≤ 0.52) ceramics were prepared by the conventional mixed oxide method. With the increase of PT content, a change from rhombohedral phase to tetragonal phases, and while the morphotropic phase boundary (MPB) composition is located in the range of x = 0.46–0.48. For x = 0.46 sample, it exhibited a high Curie temperature (T c) of 410 °C and good piezoelectric properties, d 33 ~230pC/N, k p ~40 % and k t ~22 %. For 0.46 ≤ x ≤ 0.50 samples, it can be found that depolarization temperature is around 350 °C by thermal depoling method.

Keywords

Piezoelectric ceramics High Curie temperature Morphotropic phase boundary 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.51002116) and Postdoctoral Foundation (No.DB09043).

References

  1. 1.
    R.E. Eitel, C.A. Ransall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)CrossRefGoogle Scholar
  2. 2.
    R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. Part 1(41), 2099 (2002)CrossRefGoogle Scholar
  3. 3.
    R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, I. Levin, J. Appl. Phys. 96, 2828 (2004)CrossRefGoogle Scholar
  4. 4.
    T.P. Comyn, S.P. McBirde, A.J. Bell, Mater. Lett. 58, 3844 (2004)CrossRefGoogle Scholar
  5. 5.
    J.R. Cheng, W. Zhu, N. Li, L.E. Cross, Mater. Lett. 57, 2090 (2003)CrossRefGoogle Scholar
  6. 6.
    M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96, 4405 (2004)CrossRefGoogle Scholar
  7. 7.
    M.D. Snel, W.A. Groen, G. de With, J. Europ. Ceram. Soc. 26, 89 (2006)CrossRefGoogle Scholar
  8. 8.
    M.R. Suchomel, P.K. Davies, Appl. Phys. Lett. 86, 262903 (2005)CrossRefGoogle Scholar
  9. 9.
    W.M. Zhu, H.Y. Guo, Z.-G. Ye, Phys. Rev. B 78, 014401 (2008)CrossRefGoogle Scholar
  10. 10.
    T.P. Comyn, T. Stevenson, A.J. Bell, 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 122 (2004).Google Scholar
  11. 11.
    A. Moure, M. Alguero, L. Pardo, E. Ringgaard, A.F. Pedersen, J. Europ. Ceram. Soc. 27, 237 (2007)CrossRefGoogle Scholar
  12. 12.
    C.A. Randall, R.E. Eitel, B. Jones, T.R. Shrout, J. Appl. Phys. 95, 3633 (2004)CrossRefGoogle Scholar
  13. 13.
    M.D. Snel, W.A. Groen, G. de With, J. Europ. Ceram. Soc. 25, 3229 (2005)CrossRefGoogle Scholar
  14. 14.
    S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 034108 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Chen, X. Dong, C. Mao, F. Cao. J. Am. Ceram. Soc. 89, 3270 (2006)CrossRefGoogle Scholar
  16. 16.
    C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J. Appl. Phys. 99, 024106 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Postdoctoral Research Station of Material Science and EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric ResearchXi’an Jiaotong UniversityXi’anChina

Personalised recommendations