Advertisement

Journal of Electroceramics

, Volume 29, Issue 1, pp 8–11 | Cite as

Pyroelectric, dielectric, and piezoelectric properties of MnO2-doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free ceramics

  • Qingfeng Zhang
  • Shenglin Jiang
  • Tongqing Yang
Article

Abstract

MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free piezoelectric ceramics were prepared by conventional solid-state reaction process and the effect of MnO2 addition on the pyroelectric, piezoelectric and dielectric properties were studied. The experiment results showed that the pyroelectric, piezoelectric, and dielectric properties strongly depended on MnO2 addition in the (Na0.82 K0.18)0.5Bi0.5TiO3 ceramics. Excellent electrical properties were obtained in (Na0.82 K0.18)0.5Bi0.5TiO3 with 0.8 mol% MnO2. The large dielectric loss of pure BNT ceramics was significantly reduced, the piezoelectric constant was improved, and it also showed excellent pyroelectric properties when compared with other lead free ceramics, with pyroelectric coefficient p = 17 × 10−4 C/m2K and figure of merit F d  = 6.56 × 10−5 Pa−0.5. With these outstanding pyroelectric properties, the 0.8 mol% MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 ceramic can be a promising material for pyroelectric sensor applications in future.

Keywords

Pyroelectric properties Dielectric properties Lead-free piezoelectric ceramics MnO2 dopants 

References

  1. 1.
    H.C. Yu, Z.G. Ye, Appl. Phys. Lett. 93, 112902 (2008)CrossRefGoogle Scholar
  2. 2.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  3. 3.
    Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, J. Appl. Phys. 103, 074109 (2008)CrossRefGoogle Scholar
  4. 4.
    B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)CrossRefGoogle Scholar
  5. 5.
    S.C. Zhao, G.R. Li, A.L. Ding, T.B. Wang, Q.R. Yin, J. Phys. D. 39, 2277 (2006)CrossRefGoogle Scholar
  6. 6.
    Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Ishii, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 40, 5660 (2001)CrossRefGoogle Scholar
  8. 8.
    D.M. Lin, D.Q. Xiao, J.G. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)CrossRefGoogle Scholar
  9. 9.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)CrossRefGoogle Scholar
  10. 10.
    G.F. Fan, W.Z. Lu, X.H. Wang, F. Liang, Appl. Phys. Lett. 91, 202908 (2007)CrossRefGoogle Scholar
  11. 11.
    Z.P. Yang, B. Liu, L.L. Wei, Y.T. Hou, Mater. Res. Bull. 43, 81 (2008)CrossRefGoogle Scholar
  12. 12.
    X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786 (2006)CrossRefGoogle Scholar
  13. 13.
    X.J. Li, Q. Wang, Q.L. Li, J. Electroceram. 20, 89 (2008)CrossRefGoogle Scholar
  14. 14.
    G.Z. Zhang, S.L. Jiang, Y.Y. Zhang, T.T. Xie, Curr. Appl. Phys. 9, 1434 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sensors Actuators A 126, 41 (2006)CrossRefGoogle Scholar
  16. 16.
    M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 120 (2007)CrossRefGoogle Scholar
  17. 17.
    L.X. He, M. Gao, C.E. Li, W.M. Zhu, H.X. Yan, J. Am. Ceram. Soc. 21, 703 (2001)CrossRefGoogle Scholar
  18. 18.
    S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 103, 104105 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qingfeng Zhang
    • 1
    • 2
  • Shenglin Jiang
    • 2
  • Tongqing Yang
    • 1
  1. 1.Functional Materials Research LaboratoryTongji UniversityShanghaiChina
  2. 2.Department of Electronic Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations