Journal of Electroceramics

, Volume 28, Issue 4, pp 246–255 | Cite as

Dielectric properties and scaling behavior of lithium tungsten phosphate glasses



In the present study a series of ternary (30 Li2O, (70-x) P2O5, xWO3) glasses were prepared and their dielectric properties and ac conductivity were investigated. The measurements have been taken in the frequency range from 100 Hz to 100 kHz and over the temperature range from 296 K to 578 K. The temperature dependence of ac conductivity can be adequately explained by considering the contributions from mixed ionic and electronic mechanisms. In the studied glasses it is found that the ac conductivity increases with increasing frequency. By investigating the relation between temperature and the frequency exponent “s” of the power law σac = Aωs, it is found that the Correlated Barrier Hopping model (CBH) is appropriate for describing the conduction mechanism in the samples. In an attempt to investigate the universality of ac conductivity in these glasses, it is found that the data obtained follow Rolling scaling model. When considering the dielectric properties, it is found that the Mvs. M′ plots give master Cole-Cole curves at all temperatures. These results can be considered as an indication of the presence of space charge or accumulation of charges in some regions inside the samples. The relation between M/ Mmax″ and f/f p represent a master plot at different temperatures. These scaling suggest the existence of a distribution of potential wells, in which the carriers are trapped.


Lithium tungsten phosphate glasses Dielectric properties ac conductivity and scaling models 



The authors wish to thank Prof. M.K.El-Nimer , physics Department, Faculty of Science, Tanta University for allowing us to carry out the experimental work ac measurements electrical conductivity and for fruitful discussions.


  1. 1.
    R.H. Doremus, Glass Science, 2nd edn. (Johh Wiley 1973)Google Scholar
  2. 2.
    K.U. Kumar, P. Babu, K.H. Jang, H.J. Seo, C.K. Jayasankar, A.S. Joshi, J. Alloy. Comp. 458, 509 (2008)CrossRefGoogle Scholar
  3. 3.
    N. Hashima, Y. Mayumiand, J. Nishii, Mater. Sci. Eng. B 161(1–3), 91 (2009)Google Scholar
  4. 4.
    M. Elisa, B. Sava, A. Diaconu, D. Ursu, R. Patrascu, J. Non-Cryst. Solids 355, 1877 (2009)CrossRefGoogle Scholar
  5. 5.
    G.D. Khattak, A. Mekki, M.A. Gondal, Appl. Surf. Sci. 256(11), 3630 (2010)CrossRefGoogle Scholar
  6. 6.
    M. von Dirke, S. Mullar, M. Rager, J. Non-Cryst. Sol. 124, 265 (1990)CrossRefGoogle Scholar
  7. 7.
    P. Subbalakshmi, N. Veeraiah, Phys. Chem. Glass 42, 307 (2001)Google Scholar
  8. 8.
    M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987)Google Scholar
  9. 9.
    H. Hirashima, K. Nishi, T. Yoshida, J. Am. Ceram. Soc. 66, 7070 (1983)CrossRefGoogle Scholar
  10. 10.
    D. Boudlish, L. Bih, M. Archidi, M. Haddad, A. Yacoubi, A. Nadiri, B. Elouadi, J. Am. Soc. 85, 623 (2002)Google Scholar
  11. 11.
    L. Bih, L. Abbas, A. Nadiri, H. Khemakhem, B. Elouadi, J. Mol. Struct. 872, 1 (2008)CrossRefGoogle Scholar
  12. 12.
    F. Studer, N. Rih, B. Raveau, J. Non-Cryst. Solids 107, 101 (1988)CrossRefGoogle Scholar
  13. 13.
    J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace, Solid State Ionics 86–88, 497 (1996)CrossRefGoogle Scholar
  14. 14.
    L. Bih, L. Abbas, S. Mohdachi, A. Nadiri, J. Mol. Struct. 891, 173 (2008)CrossRefGoogle Scholar
  15. 15.
    M.H. Hekmat-Shoar, C.A. Hogarth, G.R. Moridi, J. Mater. Sci. 20, 889 (1985)CrossRefGoogle Scholar
  16. 16.
    L. Murawski, R.J. Barczynski, Solid State Ionics 176, 2145 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Murugaraj, G. Govindaraj, and Deepa George. Mater. Lett. 57, 1656–1661 (2003)CrossRefGoogle Scholar
  18. 18.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  19. 19.
    R. Hill, A. Jonscher, J. Non-Cryst. Solids 32, 53 (1979)CrossRefGoogle Scholar
  20. 20.
    S. Elliot, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  21. 21.
    M.K. Elkholy, R.A. El-Mallawany, Mater. Chem. Phys. 40, 163 (1995)CrossRefGoogle Scholar
  22. 22.
    P.K. Dixon, L. Wu, S.R. Nagel, Phys. Rev. Lett. 65(9), 1108 (1990)CrossRefGoogle Scholar
  23. 23.
    N. Menon, S.R. Nagel, Phys. Rev. Lett. 74(7), 1230 (1995)CrossRefGoogle Scholar
  24. 24.
    D.L. Sidebottom, J. Zhang, Phys. Rev. B 62(9), 5503 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78(11), 2160 (1997)CrossRefGoogle Scholar
  26. 26.
    J.R. Macdonald, J. Appl. Phys. 90(1), 153 (2001)CrossRefGoogle Scholar
  27. 27.
    S.A. Saafan, Phys B Condens Matter 403, 2049 (2008)CrossRefGoogle Scholar
  28. 28.
    P. Syam Prasad, B.V. Raghavaiah, R. Balaji Rao, C. Laxmikanth, N. Veeraiah, Solid State Commun. 132, 235 (2004)CrossRefGoogle Scholar
  29. 29.
    M. Prashant Kumar, T. Sankarappa, S. Kumar, J. Alloys Compd. 464, 393 (2008)CrossRefGoogle Scholar
  30. 30.
    D.K. Durga, N. Veeraiah, Physica B 324, 127 (2002)CrossRefGoogle Scholar
  31. 31.
    P. Pergo, W.M. Pontuschka, J.M. Prison, Solid State Commun. 141, 545 (2007)CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  33. 33.
    D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159 (1983)CrossRefGoogle Scholar
  34. 34.
    S.A. Saafan, A.S. Seoud, R.E. El Shater, Phys. B 365, 27 (2005)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, Universal relaxation law (Chelsea Dielectric Press Ltd, London, 1996)Google Scholar
  36. 36.
    D.L. Sidebottom, B. Roling, K. Funke, Phys. Rev. B (2), 024301 (2000)Google Scholar
  37. 37.
    G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 41, 545 (1970)CrossRefGoogle Scholar
  38. 38.
    F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)CrossRefGoogle Scholar
  39. 39.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)CrossRefGoogle Scholar
  40. 40.
    S. Duhan, S. Sanghi, A. Agarwal, A. Sheora, S. Rani, Physica B 404, 1648 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Dutta, A. Ghosh, J. Non-Cryst. Solids 351, 203 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Lanfredi*, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146, 329 (2002)CrossRefGoogle Scholar
  43. 43.
    A.A. Ali, M.H. Shaaban, Solid State Sci. 12, 2148 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations