Skip to main content
Log in

A hysteresis model based on ellipse polar coordinate and microscopic polarization theory

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this paper, the underlying anhysteretic polarization is derived based on Boltzmann statictics and Langevin model. The remnant polarization and the irreversible polarization are analyzed. A thermodynamic description of ferroelectric phenomena is proposed to address the coupling relationship between electrical field and mechanical field by considering the series expansion of the elastic Gibbs energy function. A simple linear mapping hysteresis model based on theory of microscopic polarization and ellipse polar coordinate is derived. In order to evaluate the effectiveness of the proposed model, a nano-positioning stage driven by the PZT in open-loop operation is used to test. The experimental results show that the proposed hysteresis model could precisely describe hysteresis phenomena. The model max relative error of full span range is about 0.5 %. The proposed model simplifies the identification procedure of its inverse model. It is experimentally demonstrated that the tracking precision is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Tao, P.V. Kolotovic, IEEE Trans. Autom. Control. 40(2), 200 (1995)

    Article  Google Scholar 

  2. P. Ge, M. Jouaneh, IEEE Trans. Control. Syst. Technol. 4(3), 211 (1996)

    Google Scholar 

  3. P. Ge, M. Jouaneh, Precis. Eng. 20, 99 (1997)

    Article  Google Scholar 

  4. M.A. Krasnoskl’skii, A.V. Pokrovskii, (Springer-Verlag, New York, 1989)

  5. G. Webb, A. Kurdila, D. Lagoudas, J. Guid. Control. Dyn. 23(3), 459 (2000)

    Article  Google Scholar 

  6. J. Ha, Y. Kung, R. Fung, Sensor Actuator Phys. 132, 643 (2006)

    Article  Google Scholar 

  7. K. Kuhnen, H. Janocha, 6th International Conference on New Actuators, (Bremen, 1998), p. 309

  8. P. Kreci, K. Kuhnen, IEE Proc. Contr. Theor. Appl. 148(3), 185 (2001)

    Article  Google Scholar 

  9. K. Kuhnen, H. Janocha, Sensor Actuator Phys. 79, 83 (2000)

    Article  Google Scholar 

  10. H. Aderiaens, W. Koning, R. Baning, IEEE ASME Trans. Mechatron. 5, 331 (2000)

    Article  Google Scholar 

  11. M. Goldfarb, N. Celanovic, ASME J. Dyn. Syst. Meas. Contr. 119, 478 (1997)

    Article  Google Scholar 

  12. S. Bashash, N. Jalili, J. Appl. Phys. 100(1), 014103 (2006)

    Article  Google Scholar 

  13. E. James, IEEE Trans. Automat. Contr. 38, 351 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China under Grant No. 61174087 and Foundation for University Key Teacher of Heilongjiang Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Ru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ru, C., Chen, T. A hysteresis model based on ellipse polar coordinate and microscopic polarization theory. J Electroceram 28, 240–245 (2012). https://doi.org/10.1007/s10832-012-9719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9719-2

Keywords

Navigation