Journal of Electroceramics

, Volume 30, Issue 1–2, pp 60–65 | Cite as

Improved piezoelectric properties of Ag doped 0.94(K0.5–βNa0.5–δ)NbO3–0.06Li1–γNbO3 ceramics by templated grain growth method

  • Moon-Soon Chae
  • Kyung-Su Lee
  • Sang-Mo Koo
  • Jae-Geun Ha
  • Jae-Ho Jeon
  • Jung-Hyuk Koh


In this work, Ag doped 0.94(K0.5–βNa0.5–δ)NbO3–0.06Li1–γNbO3 lead-free piezoelectric ceramics have been prepared by templated grain growth (TGG) using cubic (K,Na)NbO3 single crystal seeds as templates. Specimens were prepared by the conventional mixed method and sintered in controlled atmosphere. TGG method was well known, because that this method can improve piezoelectric properties by increasing the grain size during the sintering process. Sintering caused densification and grain growth of ceramics by the expense of matrix particles. Densification prior to grain growth was found to be necessary to obtain highly textured ceramics. Crystalline properties were analyzed by the XRD method. The effects of TGG on phase structure, microstructure, piezoelectric and dielectric properties of Ag doped 0.94(K0.5–βNa0.5–δ)NbO3–0.06Li1–γNbO3 ceramics were investigated.


Templated grain growth Piezoelectric ceramics KNN Seed Ag dopants 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which was funded by the Ministry of Education, Science and Technology (grant number 2010–0011536) and the Fundamental R&D Program for Core Technology of Materials, which was funded by the Ministry of Knowledge Economy and internal research grant from Kwangwoon Univ 2012


  1. 1.
    K. Shiratsuyu, K. Hayashi, A. Ando, Y. Sakabe, Jpn. J. Appl. Phys. 39, 5609 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Ouchi, K. Nagano, S. Hayakawa, J. Am. Ceram. Soc. 48, 630 (1965)CrossRefGoogle Scholar
  3. 3.
    S.T. Chung, K. Nagata, H. Igarashi, Ferroelectrics 94, 243 (1989)CrossRefGoogle Scholar
  4. 4.
    S.W. Choi, R.T.R. Shrout, S.J. Jang, A.S. Bhalla, Ferroelectrics 100, 29 (1989)CrossRefGoogle Scholar
  5. 5.
    V. Lingwal, B.S. Semwal, N.S. Panwar, Bull. Mater. Sci. 26, 619 (2003)CrossRefGoogle Scholar
  6. 6.
    H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129, 279 (2004)CrossRefGoogle Scholar
  8. 8.
    S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw and S.B. Dai, Ferroelectrics. 297, 11 (2003)Google Scholar
  9. 9.
    K. Kakimoto, A. Koichiro, Y. Guo, O. Hitoshi, Jpn. J. Appl. Phys. 44, 7064 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005)CrossRefGoogle Scholar
  11. 11.
    C.H. Choi, C.W. Ahn, S. Nahm, J. Oh, J.S. Lee, Appl. Phys. Lett. 90, 132905 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Kosec, V. Bohnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2003)CrossRefGoogle Scholar
  14. 14.
    J.H. Koh, S.I. Khartsev, A. Grishin, Appl. Phys. Lett. 77, 4416 (2000)CrossRefGoogle Scholar
  15. 15.
    F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 120 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Moon-Soon Chae
    • 1
  • Kyung-Su Lee
    • 1
  • Sang-Mo Koo
    • 1
  • Jae-Geun Ha
    • 1
  • Jae-Ho Jeon
    • 2
  • Jung-Hyuk Koh
    • 1
  1. 1.Department of Electronic materials EngineeringKwangwoon UniversitySeoulKorea
  2. 2.Korea Institute of Materials ScienceChangwonKorea

Personalised recommendations