Journal of Electroceramics

, Volume 26, Issue 1–4, pp 14–22 | Cite as

MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam

  • Ryan R. Knight
  • Changki Mo
  • William W. Clark


This paper presents optimization of interdigitated (d 33 ) piezoelectric MEMS unimorph cantilever beams for harvesting vibration energy or for tuning resonators. The analysis of the poling behavior of the piezoelectric material is the key feature. While it is common that simplified models of interdigitated piezoelectric devices assume some uniform and well-defined poling pattern, the finite element modeling used in this work shows that not to be the case. A percent poling factor is developed to investigate the real losses associated with non-uniform poling. A parametric study in terms of electrode patterns, piezoelectric layer dimensions, and electrode dimensions is carried out to examine their effect on the percent poling factor. Design guidelines are provided to help ensure that such piezoelectric MEMS devices are developed to obtain optimum energy harvesting or tuning performance.


MEMS Piezoelectric Interdigitated Electrode Energy harvesting Finite element analysis 


  1. 1.
    R. Sood, Y.B. Jeon, J.H. Jeong, S.G. Kim, Piezoelectric Micro Power Generators for Energy Harvesting (Technical Digest of the Solid-State Sensor and Actuator Workshop, Hilton Head USA, 2004)Google Scholar
  2. 2.
    Y.B. Jeon, R. Sood, J.H. Jeong, S.G. Kim, MEMS power generator with transverse mode thin film PZT. Sens Actuators A 122, 16–22 (2005)CrossRefGoogle Scholar
  3. 3.
    W.J. Choi, Y. Jeon, R. Sood, S.G. Kim, Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 17, 543–548 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Shen, J.H. Park, J. Vjitsaria, S.Y. Choe, H.C. Wikle, D.J. Kim, The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18, 055017 (2008). 7 ppCrossRefGoogle Scholar
  5. 5.
    B.S. Lee, S.C. Lin, W.J. Wu, X.Y. Wang, P.Z. Chang, C.K. Lee, Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19, 065014 (2009). 8 ppCrossRefGoogle Scholar
  6. 6.
    E.K. Reilly, P.K. Wright, Modeling, fabrication and stress compensation of an epitaxial thin film piezoelectric microscale energy scavenging device. J Micromech Microeng 19, 095014 (2009). 11 ppCrossRefGoogle Scholar
  7. 7.
    Y.K. Hong, K.S. Moon, M. Levy, Single-crystal film piezoelectric sensors, actuators, and energy harvesters with interdigitated electrodes. Ferroelectric 342, 1–13 (2006)CrossRefGoogle Scholar
  8. 8.
    S. John, J. Sirohi, G. Wang, “Comparison between PMN and PZT as a driving element in a compact hybrid actuator,” in Proc. of ISSS, Vol. ISSS-2005/SA-15 (2005).Google Scholar
  9. 9.
    D.L. DeVoe, Piezoelectric thin film micromechanical beam resonators. Sens Actuators A 88, 263–272 (2001)CrossRefGoogle Scholar
  10. 10.
    L. Li, P. Kumar, L. Calhoun, D.L. DeVoe, Piezoelectric Al0.3 Ga0.7As longitudinal mode beam resonators. J MEMS 15, 465–470 (2006)Google Scholar
  11. 11.
    G. Piazza, P.J. Stephanou, A.P. Pisano, One and two port piezoelectric higher order contour-mode MEMS resonators for mechanical signal processing. Solid State Electron 51, 1596–1608 (2007)CrossRefGoogle Scholar
  12. 12.
    C.L. Dai, C.H. Kuo, M.C. Chiang, Microelectromechanical resonator manufacturing using CMOS-MEMS technique. Microelectron J 38(6–7), 672–677 (2007)CrossRefGoogle Scholar
  13. 13.
    R.M.C. Mestrom, R.H.B. Fey, J.T.M. van Beek, K.L. Phan, H. Nijmeijer, Modelling the dynamics of a MEMS resonator: Simulations and experiments. Sens Actuators A 142, 306–315 (2008)CrossRefGoogle Scholar
  14. 14.
    J.L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadel, N. Barniol, Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies. J Micromech Microeng 19, 015002 (2009). 10 ppCrossRefGoogle Scholar
  15. 15.
    W. Pan, P. Soussan, B. Nauwelaers, A.C. Tilmans, A surface micromachined electrostatically tunable film bulk acoustic resonator. Sens Actuators A 126, 436–446 (2006)CrossRefGoogle Scholar
  16. 16.
    H. Chandrahalim, S. A. Bhave, E. P. Quevy, R. T. Howe, “Aqueous transduction of poly-SiGe disk resonators,” 14 th Int. Conf. Solid-State Sensors, Actuators and Microsystems, 313–316 (2007).Google Scholar
  17. 17.
    H. Chandrahalim and S. A. Bhave, “Digitally-tunable MEMS filter using mechanically-coupled resonator array,” IEEE conf. on MEMS, 1020-1023 (2008)Google Scholar
  18. 18.
    H. Chandrahalim, S.A. Bhave, R. Polcawich, J. Pulskamp, D. Judy, R. Kaul, M. Dubey, Perfromance comparison of Pb(Zr0.52Ti0.48)O3-only and Pb(Zr0.52Ti0.48)O3-on-silicon resonators. Appl Phys Lett 93, 233504 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Kawakubo, T. Nagano, K. Abe, M. Nishigaki, T. Ono, “Piezoelectric MEMS element and tunable filter equipped with the piezoelectric MEMS element,” US Patent Number 7,471,031 B2, (2008).Google Scholar
  20. 20.
    G. K. Ho, F. Ayazi, S. Pourkamali, K. Sundaresan, “Highly tunable low-impedance capacitive micromechanical resonators, oscillators, and process relating thereto,” US Patent Number 7,511,870 B2, (2009).Google Scholar
  21. 21.
    I. Zine-El-Abidine, P. Yang, A tunable mechanical resonator. J Micromech Microeng 19, 125004 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Nabki, K. Allidina, F. Ahmad, P.V. Cicek, M.N. El-Gamal, A Highly Integrated 1.8 GHz Frequency Synthesizer Based on a MEMS Resonator. IEEE J Solid State Circ 44(8), 2154–2168 (2009)CrossRefGoogle Scholar
  23. 23.
    A.A. Frederick, Analysis and Fabrication of MEMS Tunable Piezoelectric Resonators (University of Pittsburgh, Pittsburgh, MS Thesis, 2006)Google Scholar
  24. 24.
    R. Knight, The Analysis and Testing of MEMS and Macro Scale Piezoelectric Devices (University of Pittsburgh, Pittsburgh, M.S. Thesis, 2007)Google Scholar
  25. 25.
    W.W. Clark, “Vibration Control with State-Switched Piezoelectric Materials,” J. of Intelligent Material Systems and Structures, 11 (2000).Google Scholar
  26. 26.
    C. L. Davis, G. Lesieutre, J. Dosch, “A tunable electrically shunted piezoceramic vibration absorber,” Proc. SPIE, 2045 (2003).Google Scholar
  27. 27.
    G. Lesieutre, G. Ottman, H. Hofmann, Damping as a result of piezoelectric energy harvesting. J Sound Vib 269, 991–1001 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Muriuki, An Investigation into the Design and Control of Tunable Piezoelectric Resonators (University of Pittsburgh, Pittsburgh, Ph.D Dissertation, 2004)Google Scholar
  29. 29.
    W. Wu, Y. Chen, B. Lee, J. He, Y. Peng, “Tunable resonant frequency power harvesting devices,” Proc. of SPIE, Smart Structures and Materials, Damping and Isolation, 6169 (2006).Google Scholar
  30. 30.
    S. Kim, Low Power Energy Harvesting with Piezoelectric Generator (University of Pittsburgh, Pittsburgh, Ph.D Dissertation, 2002)Google Scholar
  31. 31.
    C. Mo, S. Kim, W. W. Clark, “Analysis of Power Generating Performance for Unimorph Cantilever Piezoelectric Beams with the Interdigitated Electrode,” in Proc. of IDETC/CIE, (ASME, San Diego USA, 2005). Google Scholar
  32. 32.
    C. Mo, S. Kim, W.W. Clark, Theoretical analysis of energy harvesting performance for unimorph piezoelectric benders with interdigitated electrodes. Smart Struct Mater 18, 5 (2009)Google Scholar
  33. 33.
    H. A. Sodano, J. Lloyd, D. J. Inman, “An experimental comparison between several active composite actuators for power generation,” in Proc. of SPIE on Smart Structures and Materials, (SPIE, San Diego USA, 2004), vol. 5390.Google Scholar
  34. 34.
    H.A. Sodano, D.J. Inman, G. Park, Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16, 10 (2005)Google Scholar
  35. 35.
    ANSYS™, Coupled-Field Analysis Guide, Release 10.0 Documentation for ANSYS.Google Scholar
  36. 36.
    C.R. Bowen, L.J. Nelson, R. Stevens, Optimisation of interdigitated electrode for piezoelectric actuators and active fibre composites. J Electroceram 16, 263–269 (2006)CrossRefGoogle Scholar
  37. 37.
    W. Becket, W. Kreher, Modelling piezoelectric modules with interdigitated electrode structures. Comput Mater Sci 26, 36–45 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ryan R. Knight
    • 1
  • Changki Mo
    • 2
  • William W. Clark
    • 1
  1. 1.Mechanical Engineering and Materials Science DepartmentUniversity of PittsburghPittsburghUSA
  2. 2.School of Mechanical and Materials EngineeringWashington State University-Tri-CitiesRichlandUSA

Personalised recommendations