Advertisement

Journal of Electroceramics

, Volume 25, Issue 2–4, pp 150–158 | Cite as

Investigation of top electrode for PZT thick films based MEMS sensors

  • Christian C. Hindrichsen
  • Thomas Pedersen
  • Paw T. Kristiansen
  • Rasmus Lou-Møller
  • Karsten Hansen
  • Erik V. Thomsen
Article
  • 199 Downloads

Abstract

In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 μm. Three test structures are used to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less than 10 nm. It is found that the piezoelectric properties of the PZT thick film are degraded up to 1,000 μm away from a region of the PZT thick film that is exposed directly to the silicon substrate without a diffusion barrier layer. Finally, ferroelectric hysteresis loops are used to verify that the piezoelectric properties of the PZT thick film are unchanged after the processing of the top electrode.

Keywords

PZT Piezoelectric Thick film Top electrode MEMS device 

References

  1. 1.
    S. Trolier-Mckinstry, P. Muralt, Thin film piezoelectrics for MEMS. J. Electroceramics 12, 7–17 (2004)CrossRefGoogle Scholar
  2. 2.
    R.A. Dorey, R.W. Whatmore, Electroceramic thick film fabrication for MEMS. J. Electroceramics 12, 19–32 (2004)CrossRefGoogle Scholar
  3. 3.
    G.H. Gautschi, Piezoelectric Sensorics (Springer, 2002)Google Scholar
  4. 4.
    S.P. Beeby, N.J. Grabham, N.M. White, Microprocessor implemented self-validation of thick-film PZT/silicon accelerometer. Sens. Actuators A 92, 168–174 (2001)CrossRefGoogle Scholar
  5. 5.
    C.C. Hindrichsen, E.V. Thomsen, R. Lou-Møller, T. Bove, in MEMS Accelerometer with Screen Printed Piezoelectric Thick Film. 5th IEEE Conference on Sensors, Daegu, South Korea (2007), pp. 1477–1480Google Scholar
  6. 6.
    F.F.C. Duval, R.A. Dorey, R.W. Wright, Z. Huang, R.W. Whatmore, Fabrication and modeling of high-frequency PZT composite thick film membrane resonators. IEEE Trans. Ultrason. 51, 1255–1261 (2004)CrossRefGoogle Scholar
  7. 7.
    P. Maréchal, F. Levassort, J. Holc, L.-P. Tran-Huu-Hue, M. Kosec, M. Lethiecq, High-frequency transducers based on integrated piezoelectric thick films for medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1524–1533 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    R. Lou-Møller, C.C. Hindrichsen, L.H. Thamprup, T. Bove, E. Ringgaard, A.F. Pedersen, E.V. Thomsen, Screen-printed piezoceramics thick films for miniaturised devices. J. Electroceramics 19, 333–338 (2007)CrossRefGoogle Scholar
  9. 9.
    Z. Wang, W. Zhu, J. Miao, H. Zhu, C. Chao, O.K. Tan, Micromachined thick film piezoelectric ultrasonic transducers array. Sens. Actuators A 130–131, 485–490 (2006)Google Scholar
  10. 10.
    L. Wang, R.A. Wolf Jr., Y. Wang, K.K. Deng, L. Zou, R.J. Davis, S. Troiler-McKinstry, Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J. Microelectromechanical Syst. 12(4), 433–439 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Jeon, Y.G. Seo, S.J. Kim, K. No, Integr. Ferroelectr. 30, 91–101 (2000)CrossRefGoogle Scholar
  12. 12.
    L. Simon, S. Le Dren, PZT and PT screen-printed thick films. J. Eur. Ceram. Soc. 21, 1441–1444 (2001)CrossRefGoogle Scholar
  13. 13.
    C. Lucat, F. Menil, R. Von Der Muhll, Thick-film densification for pyroelctric sensors. Meas. Sci. Technol. 8, 38–41 (1997)CrossRefADSGoogle Scholar
  14. 14.
    H.J. Kim, Y-B. Kim, J-Y. Kang, T.S. Kim, Fabrication of resonant behavior of PZT thick film cantilever for BioChip. Integr. Ferroelectr. 50, 11–20 (2002)Google Scholar
  15. 15.
    R. Maas, M. Koch, N.R. Harris, N.M. White, A.G.R. Evans, Thick-film printing of PZT onto silicon. Mater. Lett. 31, 109–112 (1997)CrossRefGoogle Scholar
  16. 16.
    Company homepage: www.ferroperm-piezo.com
  17. 17.
    S.P. Beeby, A. Blackburn, N.M. White, Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems. J. Micromechanics Microengineering 9, 218–229 (1999)CrossRefADSGoogle Scholar
  18. 18.
    X.G. Tang, Q.X. Liu, L.L. Jiang, A.L. Ding, Optical properties of Pb(ZrxTi1 − x)O3 (x = 0.4, 0.6) thin films on Pt-coated Si substrates studied by spectroscopic ellipsometry. Mater. Chem. Phys. 103(2–3), 329–333 (2007)CrossRefGoogle Scholar
  19. 19.
    O. Blanco, J. Heiras, J.M. Siqueiros, E. Martinez, A.G. Castellanos-Guzman, PZT films grown by RF sputtering at high oxygen pressure. J. Mater. Sci. Lett. 22, 449–453 (2003)CrossRefGoogle Scholar
  20. 20.
    D.R. Lide, Handbook of Chemistry and Physics, 73rd edn. (CRC Press, Boca Raton, FL, 1993)Google Scholar
  21. 21.
    M. Hrowat, J. Holc, S. Drnovsek, D. Belavic, J. Cilensek, M. Kosec, PZT thick films on LTCC substractes with an interposed alumina barrier layer. J. Eur. Ceram. Soc. 26, 897–900 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Park, M. Won, Y. Oh, Y. Son, An XPS study and electrical properties of Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) structures according to the substarte temperature of PbO buffer layer. Appl. Surf. Sci. 252, 1988–1997 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christian C. Hindrichsen
    • 1
  • Thomas Pedersen
    • 1
  • Paw T. Kristiansen
    • 1
  • Rasmus Lou-Møller
    • 2
  • Karsten Hansen
    • 3
  • Erik V. Thomsen
    • 1
  1. 1.Department of Micro- and NanotechnologyTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.InSensor A/SKvistgaardDenmark
  3. 3.Ferroperm Piezoceramics A/SKvistgaardDenmark

Personalised recommendations