Journal of Electroceramics

, Volume 25, Issue 1, pp 45–55 | Cite as

Modal validation of a cantilever-plate bimorph actuator illustrating sensitivity to 3D characterisation

  • Matthew J. Oldfield
  • Mark A. Atherton
  • Ron A. Bates
  • Mark A. Perry
  • Henry P. Wynn


A dynamic finite element (FE) model of a small piezoelectric plate actuator with cantilever boundary conditions is validated experimentally using operating modes, as the scale of the device prevents conventional modal excitation. A general methodology is presented for assembly of 3D modal response of the plate surface from single-point laser vibrometer data, which is an economical alternative to the automated process provided by scanning vibrometers. 1D blocked force and 2D beam assumptions prove insufficient for validation due to modes both in the length and width of the device in operation. The model is validated in the audible frequency range encompassing 12 experimental operating modes. It is shown that when conducting validation using operating modes, the experimental results, simulated frequency response and FE eigenmodes must all be compared. Discrepancies between FE and experiment are identified and attributed to manufacturing imperfections above modelling errors.


Bimorph Vibration measurement Finite element methods Cantilever plate Experimental validation 



This work was supported by EPSRC grants #GR/S63502/01 at the London School of Economics and #GR/S63496/02 at Brunel University. The authors thank NXT Sound for provision of the SLDMA devices and technical advice.


  1. 1.
    R.J. Wood, E. Steltz, R.S. Fearing, Sensor. Actuat. A-Phys. 119, 476–88 (2005)CrossRefGoogle Scholar
  2. 2.
    R. Wetherhold, M. Messer, A. Patra, J. Eng, Mater-T. ASME. 125, 148–52 (2003)CrossRefGoogle Scholar
  3. 3.
    W. Zhang, G. Meng, H. Li, Int. J. Adv. Manuf. Technol. 28, 321–7 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Preumont, Mechatronics Dynamics of Electromechanical and Piezoelectric Systems (Springer, Dordrecht, 2006)MATHGoogle Scholar
  5. 5.
    K. Jian, M.I. Friswell, Mech. Syst. Signal Pr. 20, 2290–2304 (2006)CrossRefGoogle Scholar
  6. 6.
    V. Mortet, K. Haenen, J. Posmesil, M. Vanecek, M. D’Olieslaeger, Phys. Stat. Sol. 203, 3185–90 (2006)CrossRefADSGoogle Scholar
  7. 7.
    J.-C. Lin, M.H. Nien, Compos. Struc. 70, 170–6 (2005)CrossRefGoogle Scholar
  8. 8.
    H.F. Tiersten, Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity & the Vibrations of Piezoelectric Plates (Plenum, New York, 1969)Google Scholar
  9. 9.
    W.-Q. Chen, R.-Q. Xu, H.-J. Ding, J. Sound Vib. 218, 741–8 (1998)CrossRefADSGoogle Scholar
  10. 10.
    P. Cupial, J. Sound Vib. 283, 1093–113 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A. Benjeddou, J.-F. Deü, Int. J. Solids Struct. 39, 1463–86 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    D.J. Gorman, J. Sound Vib. 49, 453–67 (1976)MATHCrossRefADSGoogle Scholar
  13. 13.
    A.W. Leissa, J. Sound Vib. 31, 257–93 (1973)MATHCrossRefADSGoogle Scholar
  14. 14.
    R.D. Blevins, Formulas for Natural Frequency and Mode Shape (Van Nostrand Reinhold, New York, 1979). ch.11Google Scholar
  15. 15.
    M.I. Friswell, J. Sound Vib. 241, 361–72 (2001)CrossRefADSGoogle Scholar
  16. 16.
    H. Allik, T.J. Hughes, Int. J. Numer. Meth. Eng. 2, 151–7 (1970)CrossRefGoogle Scholar
  17. 17.
    C.M. Mota-Soares, C.A. Mota-Soares, V.M. Franco Correia, Compos. Struct. 47, 625–34 (1999)CrossRefGoogle Scholar
  18. 18.
    A.C. Hladky-Hennion et al., J. Electroceram. 19, 395–398 (2007)CrossRefGoogle Scholar
  19. 19.
    K.-J. Lim, S.-H. Kang, J.-S. Lee, J. Electroceram. 13, 429–432 (2004)CrossRefGoogle Scholar
  20. 20.
    P. Vasiljev, S. Borodinas, L. Vasiljeva, D. Mazeika, S.-J. Yoon, J. Electroceram. 20, 271–276 (2008)CrossRefGoogle Scholar
  21. 21.
    S.D. Senturia, Sensor. Actuator. 67, 1–7 (1988)CrossRefGoogle Scholar
  22. 22.
    S.-Y. Lee, B. Ko, W. Yang, Smart Mater. Struct. 14, 1343–52 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Z.K. Kusculuoglu, B. Fallahi, T.J. Royston, P. Soc, Photo-Opt. Inst. 4693, 92–103 (2002)Google Scholar
  24. 24.
    D.J. Ewins, Modal Testing Theory, Practice and Application (Research Studies, Baldock, 2000)Google Scholar
  25. 25.
    R. Schnitzer, N. Rümmler, B. Michel, P. Soc, Photo-Opt. Inst. 3825, 72–9 (2002)Google Scholar
  26. 26.
    X. Chu, L. Ma, S. Yuan, M. Li, L. Li, J. Electroceram. available online 2007Google Scholar
  27. 27.
    S.-M. Swei, P. Gao, R. Lin, Smart. Mater. Struct. 10, 409–13 (2001)CrossRefADSGoogle Scholar
  28. 28.
    J.S. Burdess, A.J. Harris, D. Wood, R.J. Pitcher, D. Glennie, J. Microelectromech. S. 6, 322–8 (1997)Google Scholar
  29. 29.
    W.-P. Lai, W. Fang, Sensor. Actuator. 96, 43–52 (2002)CrossRefGoogle Scholar
  30. 30.
    O. Burak-Ozdoganlar, B.D. Hansche, T.G. Carne, Exp. Mech. 45, 498–506 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Hu, J. Xie, S.-F. Ling, H. Du, Y. Fu, P. Soc, Photo-Opt. Inst. 5852, 633–8 (2005)Google Scholar
  32. 32.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 17, art. no. 065016 (2008)Google Scholar
  33. 33.
    MatWeb Material Property Data. Accessed 2007
  34. 34.
    IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature, IEEE Standard 319 (1990)Google Scholar
  35. 35.
    D.J. Gorman, Free Vibration Analysis of Rectangular Plates (Elsevier North Holland, New York, 1982)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Matthew J. Oldfield
    • 1
  • Mark A. Atherton
    • 1
  • Ron A. Bates
    • 2
  • Mark A. Perry
    • 2
  • Henry P. Wynn
    • 2
  1. 1.School of Engineering and DesignBrunel UniversityUxbridgeUK
  2. 2.Department of StatisticsLondon School of EconomicsLondonUK

Personalised recommendations