Journal of Electroceramics

, Volume 25, Issue 1, pp 20–25 | Cite as

Effect of excess PbO on microstructure and orientation of PZT(60/40) films

  • Chee-Sung Park
  • Jae-Wung Lee
  • Sung-Mi Lee
  • Shin-Hee Jun
  • Hyoun-Ee Kim


Lead zirconate titanate [PZT(60/40)] films were deposited by RF-magnetron sputtering using single oxide targets with various levels of excess PbO. The excess PbO in the film played an important role in the pyrochlore-to-perovskite transformation, nucleation and growth processes, orientation control, and crack formation. When 5% or 20% excess PbO was added to the target, pyrochlore phases were created and the films were severely cracked. However, the films had a perovskite structure without any pyrochlore phases when 10% or 15% excess PbO was added to the targets. More interestingly, the crystallographic orientation was strongly dependant on the excess PbO content. A film with a (111) preferred orientation was produced when 10% excess PbO was added to the target. On the other hand, a film with a (100) preferred orientation was deposited by the target with 15% excess PbO. The dielectric, ferroelectric and piezoelectric properties of these films with different orientations and microstructures were examined and correlated with the film structure.


PZT film Piezoelectric Microstructure 


  1. 1.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Stereiffer, J. Appl, Phys. 100, 051606–1 (2006)Google Scholar
  2. 2.
    K. Yanakawa, K. Imai, O. Ariumi, T. Arikado, M. Yoshioka, T. Owada, K. Okumura, Jpn. J. Appl. Phys. Part I 41, 2630 (2002)CrossRefADSGoogle Scholar
  3. 3.
    D.L. Polla, L.F. Francis, MRS Bull. 21, 59 (1996)Google Scholar
  4. 4.
    S.M. Spearing, Acta Mater. 48, 179 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Thomas, S. Mochizuki, T. Mihara, T. Ishida, Mater. Sci. and Engine. B95, 36 (2002)CrossRefGoogle Scholar
  6. 6.
    I.M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, N. Setter, J. Am, Ceram. Soc. 77, 1209 (1994)CrossRefGoogle Scholar
  7. 7.
    X. Du, J. Zheng, U. Belegundu, K. Uchino, Appl. Phys. Lett. 72, 2421 (1998)CrossRefADSGoogle Scholar
  8. 8.
    D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000)CrossRefADSGoogle Scholar
  9. 9.
    K.G. Brooks, I.M. Reaney, R. Klissurska, Y. Huang, L. Bursill, N. Setter, J. Mater, Res. 9, 2540 (1994)Google Scholar
  10. 10.
    S.-Y. Chen, I.-W. Chen, J. Am, Ceram. Soc. 77, 2332 (1994)CrossRefGoogle Scholar
  11. 11.
    S.-Y. Chen, I.-W. Chen, J. Am, Ceram. Soc. 77, 2337 (1994)CrossRefGoogle Scholar
  12. 12.
    S. Hiboux, P. Muralt, J. Euro, Ceram. Soc. 24, 1593 (2004)CrossRefGoogle Scholar
  13. 13.
    G.-T. Park, C.-S. Park, J.-J. Choi, H.-E. Kim, J. Mater, Res. 20, 882 (2005)Google Scholar
  14. 14.
    C.-S. Park, S.-W. Kim, G.-T. Park, J.-J. Choi, H.-E. Kim, J. Mater. Res. 20, 243 (2005)CrossRefADSGoogle Scholar
  15. 15.
    G.-T. Park, J.-J. Choi, J. Ryu, H. Fan, H.-E. Kim, Appl. Phys. Lett. 80, 4606 (2002)CrossRefADSGoogle Scholar
  16. 16.
    S.-M. Ha, D.-H. Kim, H.-H. Park, T.-S. Kim, Thin Solid Films 355–356, 525 (1999)CrossRefGoogle Scholar
  17. 17.
    R. Thomas, S. Mochizuki, T. Mihara, T. Ishida, Mater. Sci. Eng. B95, 36 (2002)CrossRefGoogle Scholar
  18. 18.
    G.A. Rossetti Jr., L.E. Cross, K. Kushida, Appl. Phys. Lett. 59, 2524 (1991)CrossRefADSGoogle Scholar
  19. 19.
    J.-W. Lee, C.-S. Park, M. Kim, H.-E. Kim, J. Am, Ceram. Soc. 90, 1077 (2007)CrossRefGoogle Scholar
  20. 20.
    W.D. Nix, Metall. Trans. A 20A, 2217 (1989)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chee-Sung Park
    • 1
  • Jae-Wung Lee
    • 1
  • Sung-Mi Lee
    • 1
  • Shin-Hee Jun
    • 1
  • Hyoun-Ee Kim
    • 1
  1. 1.Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoulKorea

Personalised recommendations