Journal of Electroceramics

, Volume 25, Issue 1, pp 1–10 | Cite as

Effects of the material properties on piezoelectric PZT thick film micro cantilevers as sensors and self actuators

  • Jae Hong Park
  • Hwan Kim
  • Dae Sung Yoon
  • Soo Yoo Kwang
  • Jinhyung Lee
  • Tae Song Kim


In general, PZT thick films fabricated through screen printing show porosity ranging from 10% to 40%. Unfortunately, these high porosities of thick films greatly affect the electromechanical characteristics of PZT thick film cantilevers. In this paper, we report a systematic analysis on the effect of thick film porosity on the electromechanical characteristics of the PZT thick film cantilevers in order to make the PZT thick film cantilever a highly controllable micro mass sensor or micro self actuator. The theoretical calculations of mass sensitivity and actuating force of the optimal PZT thick film cantilevers are presented with respect to the material properties and geometry of PZT thick films, which are based on experimentally verified material properties and geometrical parameters. The 400 × 300 cantilever with 20% porosity of active material was evaluated to be reliable as an optimal mass sensor and self actuator. The thick film cantilever indicates both high mass sensitivity (~48 pg/Hz), the same as sensitive thin film cantilever sensors, and high actuating force (~1.7 N), similar to strong bulk cantilevers. From the results of the modeling, it was found that the harmonic oscillation response according to material properties including the porosity, and geometry of the fabricated thick film cantilever, is quite controllable and predictable, thus enhancing the actuating force and mass sensitivity. Also, it was confirmed that controlling the porosity of PZT thick films is more efficient than controlling the cantilever geometry to increase the cantilever resonating force. However, optimizing the geometric constituents is more effective than controlling the densification of PZT thick films to increase the mass sensitivity of the cantilevers.


Cantilever Sensor Actuator Piezoelectric Thick film Porosity Mass sensitivity Actuating force 



The authors are grateful for the financial support from the Intelligent Microsystem Center sponsored by the Korea Ministry of Science and Technology as a part of the 21st Century’s Frontier R&D Projects (Grant MS-01-133-01) and National Core Research Center for Nanomedical Technology sponsored by KOSEF (Grant R15-2004-024-00000-0). Also, this work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD), (Grant Number: KRF-2006-351-D00002).


  1. 1.
    J.H. Park, T.Y. Kwon, D.S. Yoon, H. Kim, T.S. Kim, Fabrication of microcantilever sensors actuated by piezoelectric Pb(Zr0.52Ti0.48)O3 thick films and determination of their electromechanical characteristics. Adv. Funct. Mater. 15, 2021–2028 (2005). doi: 10.1002/adfm.200500331 CrossRefGoogle Scholar
  2. 2.
    J.H. Park, T.Y. Kwon, H.J. Kim, S.R. Kim, D.S. Yoon, C.-I. Chun, H. Kim, T.S. Kim, Resonance properties and mass sensitivity of monolithic microcantilever sensors actuated by piezoelectric PZT thick film. J. Electroceram. 17, 565–572 (2006). doi: 10.1007/s10832-006-6290-8 CrossRefGoogle Scholar
  3. 3.
    S.P. Beeby, A. Blackburn, N.M. White, Processing of PZT piezoelectric thick films on silicon for microelectromechancial systems. J. Micromech. Microeng. 9, 218–229 (1999). doi: 10.1088/0960-1317/9/3/302 CrossRefADSGoogle Scholar
  4. 4.
    Y.-B. Jeon, T.-S. Chung, K.-S. No, Fabrication of PZT thick films on silicon substrates for piezoelectric actuator. J. Electroceram. 4(1), 195–199 (2000). doi: 10.1023/A:1009924113335 CrossRefGoogle Scholar
  5. 5.
    R.A. Dorey, S.B. Stringfellow, R.W. Whatmore, Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film. J. Eur. Ceram. Soc. 22, 2921–2926 (2002). doi: 10.1016/S0955-2219(02) 00062-6 CrossRefGoogle Scholar
  6. 6.
    S. Le Dren, L. Simon, P. Gonnard, M. Troccaz, A. Nicolas, Investigation of factors affecting the preparation of PZT thick films. Mater. Res. Bull. 35, 2037–2045 (2000). doi: 10.1016/S0025-5408(00)00402-5 CrossRefGoogle Scholar
  7. 7.
    R.N. Torah, S.P. Beeby, N.M. White, Improving the piezoelectric properties of thick-film PZT: the influence of paste composition, powder milling process and electrode material. Sens. Actuators A Phys. 110, 378–384 (2004). doi: 10.1016/j.sna.2003.09.027 CrossRefGoogle Scholar
  8. 8.
    J.H. Park, J.H. Son, D.S. Yoon, T.S. Kim, H.-H. Park, H. Kim, Electrical properties of screen printed PZT thick films infiltrated with photo-sensitive sol compared with normal sol for cantilever type biochip. Integr. Ferroelectr. 69, 163–171 (2005). doi: 10.1080/10584580590898613 CrossRefGoogle Scholar
  9. 9.
    T.Y. Kwon, J.H. Park, Y.B. Kim, D.S. Yoon, C.I. Cheon, H.L. Lee, T.S. Kim, Preparation of piezoelectric 0.1Pb(Zn0.5 W0.5)O3-0.9Pb(Zr0.5Ti0.5)O3 solid solution and thick films for low temperature firing on a Si-substrate. J. Cryst. Growth 295, 172–178 (2006). doi: 10.1016/j.jcrysgro.2006.07.005 CrossRefADSGoogle Scholar
  10. 10.
    X. Li, W.Y. Shih, I.A. Aksay, W.-H. Shih, Electromechanical behavior of PZT-brass unimorphs. J. Am. Ceram. Soc. 82, 1733–1740 (1999). doi: 10.1111/j.1151-2916.1999.tb01993.x CrossRefGoogle Scholar
  11. 11.
    W.Y. Shih, X. Li, H. Gu, W.-H. Shih, I.A. Aksay, Simultaneous liquid viscosity and density determination using piezoelectric unimorph cantilevers. J. Appl. Phys. 89, 1497–1505 (2001). doi: 10.1063/1.1287606 CrossRefADSGoogle Scholar
  12. 12.
    J.H. Lee, PZT nanomechanical cantilever studies for protein detection system, PhD Thesis, Yonsei University, 2004, pp. 16–20.Google Scholar
  13. 13.
    F.G. Brath, J.A.C. Humphrey, Sensing in Biological Engineering (Spronger Wien, NewYork, 2002)Google Scholar
  14. 14.
    D. Sarid, Scanning force microscopy (Oxford University Press, New York, 1994)Google Scholar
  15. 15.
    J.W. Yi, W.Y. Shih, W.-H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680–1686 (2002). doi: 10.1063/1.1427403 CrossRefADSGoogle Scholar
  16. 16.
    J.W. Yi, W.Y. Shih, R. Mutharasan, W.-H. Shih, In situ cell detection using piezoelectric PZT-stainless steel cantilevers. J. Appl. Phys. 93, 619–625 (2003). doi: 10.1063/1.1524022 CrossRefADSGoogle Scholar
  17. 17.
    J. Merhaut, Theory of Electroacoustics (McGraw-Hill, New York, 1981), p. 100Google Scholar
  18. 18.
    M.D. Ward, D.A. Butty, In situ interfacial mass detection with piezoelectric transducers. Science 249, 1000–1007 (1990). doi: 10.1126/science.249.4972.1000 CrossRefPubMedADSGoogle Scholar
  19. 19.
    G.Y. Chen, R.J. Warmack, T. Thundat, D.P. Allison, A. Huang, Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum. 65, 2532–2537 (1994). doi: 10.1063/1.1144647 CrossRefADSGoogle Scholar
  20. 20.
    P.I. Oden, G.Y. Chen, R.A. Steele, R.J. Warmack, T. Thundat, Viscous drag measurements utilizing microfabricated cantilevers. Appl. Phys. Lett. 68, 3814–3816 (1996). doi: 10.1063/1.116626 CrossRefADSGoogle Scholar
  21. 21.
    R. Sandberg, K. Molhave, A. Boisen, W. Svendsen, Effect of gold coating on the Q-factor of a resonant cantilever. J. Micromech. Microeng. 15, 2249–2253 (2005). doi: 10.1088/0960-1317/15/12/006 CrossRefADSGoogle Scholar
  22. 22.
    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micron- and submicron- thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000). doi: 10.1109/84.825786 CrossRefGoogle Scholar
  23. 23.
    T.B. Gabrielson, Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron. Dev. 40, 903–909 (1993). doi: 10.1109/16.210197 CrossRefADSGoogle Scholar
  24. 24.
    Q.-M. Wang, Q. Zhang, B. Xu, R. Liu, L.E. Cross, Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J. Appl. Phys. 86, 3352–3306 (1999). doi: 10.1063/1.371213 CrossRefADSGoogle Scholar
  25. 25.
    J.G. Smith, W.-S. Choi, The constituent equations of piezoelectric heterogeneous bimorphs. IEEE Trans. Ultra. Ferro. Freq. Contr. 38, 256–270 (1991). doi: 10.1109/58.79611 CrossRefGoogle Scholar
  26. 26.
    B. Krause, G.-H. Koops, N.F.A. van der Vegt, M. Wessling, M. Wubbenhorst, J. van Turnhout, Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv. Mater. 14, 1041–1046 (2002). doi: 10.1002/1521-4095(20020805) 14:15<1041::AID-ADMA1041>3.0.CO;2-A CrossRefGoogle Scholar
  27. 27.
    J.H. Lee, K.H. Yoon, T.S. Kim, Characterization of resonant behavior and sensitivity using micromachined PZT cantilever. Integr. Ferroelectr. 50, 43–52 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical SchoolCambridgeUSA
  2. 2.Nano-Bio System Research CenterKorea Institute of Science and TechnologySeoulKorea
  3. 3.Department of Material Science and EngineeringSeoul National UniversitySeoulKorea
  4. 4.Department of Biomedical EngineeringYonsei UniversityGangwon-doKorea
  5. 5.Department of Materials Science and EngineeringUniversity of SeoulSeoulKorea
  6. 6.Intelligent Microsystem Center, Nano-Bio System Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations