Advertisement

Journal of Electroceramics

, 23:572 | Cite as

Effect of CuO addition on sintering temperature and piezoelectric properties of 0.05Pb(Al0.5Nb0.5)O3−0.95Pb(Zr0.52Ti0.48)O3+0.7 wt.% Nb2O5 + 0.5 wt.% MnO2 ceramics

  • Ju-Young Lee
  • Ji-Won Choi
  • Min-Gyu Kang
  • Sang-Jong Kim
  • Tae-Kuk Ko
  • Seok-Jin Yoon
Article

Abstract

Effect of CuO addition on piezoelectric properties of 0.05Pb(Al0.5Nb0.5)O3−0.95Pb(Zr0.52Ti0.48)O3+0.7 wt.% Nb2O5 + 0.5 wt.% MnO2 (PAN-PZT) ceramics was studied to decrease the sintering temperature below 900°C for LTCC. The PAN-PZT ceramics sintered at 1200°C had piezoelectric properties of d 33 = 340 pC/N, k p = 61.6%, Q m = 1,725, and density of 7.5 g/cm3. The addition of CuO significantly decreased the sintering temperature due to the formation of liquid phase containing a binary combination of PbO and CuO in grain boundary. Piezoelectric properties of d 33 = 361 pC/N, k p = 57%, Q m = 145, and density of 7.8 g/cm3 were achieved at sintering temperature of 900°C. The CuO doped PAN-PZT ceramics show high density and d 33 at low sintering temperature though its electromechanical quality factor abruptly decreases due to the CuO additive effect.

Keywords

0.05Pb(Al0.5Nb0.5)O3−0.95Pb(Zr0.52Ti0.48)O3+0.7 wt.% Nb2O5 + 0.5 wt.% MnO2 ceramics Piezoelectric properties Low temperature sintering CuO 

Notes

Acknowledgement

This is financially supported by the 21C Frontier R&D Program.

References

  1. 1.
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Norwell, 1996)Google Scholar
  2. 2.
    K. Chung et al., Sens. Actuator A 121, 142 (2005) doi: 10.1016/j.sna.2005.01.022 CrossRefADSGoogle Scholar
  3. 3.
    C. Galassi et al., J. Eur. Ceram. Soc. 19, 1237 (1999)CrossRefGoogle Scholar
  4. 4.
    H.G. Lee et al., J. Electroceram. 17, 1035 (2006) doi: 10.1007/s10832-006-0384-1 CrossRefGoogle Scholar
  5. 5.
    J. Yoo et al., J. Electroceram. 17, 519 (2005) doi: 10.1007/s10832-006-7723-0 CrossRefGoogle Scholar
  6. 6.
    C.-W. Ahn et al., Jpn. J. Appl. Phys. 43(1), 205 (2004) doi: 10.1143/JJAP.43.205 CrossRefADSGoogle Scholar
  7. 7.
    C.-W. Ahn et al., J. Am. Ceram. Soc. 89(3), 921 (2006) doi: 10.1111/j.1551-2916.2005.00823.x CrossRefGoogle Scholar
  8. 8.
    Y.D. Hou et al., Mater. Sci. Eng. B 110, 27 (2004) doi: 10.1016/j.mseb.2004.01.020 CrossRefGoogle Scholar
  9. 9.
    H. Takao et al., J. Am. Ceram. Soc. 89(6), 1951 (2006) doi: 10.1111/j.1551-2916.2006.01042.x CrossRefGoogle Scholar
  10. 10.
    Y. Jeong et al., Sensors Actuators A 135, 215 (2007) doi: 10.1016/j.sna.2006.06.073 CrossRefGoogle Scholar
  11. 11.
    B.M. Jin et al., J. Electroceram. 15, 2 (2005) doi: 10.1007/s10832-005-1278-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ju-Young Lee
    • 1
    • 2
  • Ji-Won Choi
    • 1
  • Min-Gyu Kang
    • 1
  • Sang-Jong Kim
    • 1
  • Tae-Kuk Ko
    • 2
  • Seok-Jin Yoon
    • 1
  1. 1.Thin Film Materials Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations