Advertisement

Journal of Electroceramics

, Volume 24, Issue 2, pp 97–103 | Cite as

Ion beam synthesis of SiC thin films

  • Shunichi Hishita
Article
  • 92 Downloads

Abstract

This report reviews irradiation effects of 2 MeV He+, Ne+, and Ar+ ions on the film structure of the carbon-film/Si-substrate system. Using ion irradiation, an epitaxial silicon carbide (SiC) film is grown at atmospheric temperature on a Si substrate. The SiC formation is achieved with appropriate thickness of the initial carbon film. Kinetic analyses of the ion dose dependence of the SiC formation reveal that the SiC film thickness evolution process includes three stages. The first is a steep increase of the SiC, which is governed by inelastic collision. The second is a gentle increase of the SiC, which is governed by diffusion. The last is a decrease of the SiC, which is caused by sputtering. The SiC formation mechanism is also discussed.

Keywords

Ion beam synthesis Epitaxial growth Epitaxial SiC film Silicon carbide thin film Electronic stopping power Nuclear stopping power 

References

  1. 1.
    W.E. Nelson, F.A. Halden, A. Rosengreen, J. Appl. Phys. 37, 333 (1966). doi: 10.1063/1.1707837 CrossRefADSGoogle Scholar
  2. 2.
    D.K. Ferry, Phys. Rev. B 12, 2361 (1975). doi: 10.1103/PhysRevB.12.2361 CrossRefADSGoogle Scholar
  3. 3.
    K. Takahashi, S. Nishino, J. Saraie, J. Electrochem. Soc. 139, 565 (1992). doi: 10.1149/1.2069122 CrossRefGoogle Scholar
  4. 4.
    W. Bahng, H.J. Kim, Thin Solid Films 290–291, 181 (1996). doi: 10.1016/S0040-6090(96)09193-6 CrossRefGoogle Scholar
  5. 5.
    K.-W. Lee, K.-S. Yu, J.-H. Boo, Y. Kim, T. Hatayama, T. Kimoto et al., J. Electrochem. Soc. 144, 1474 (1997). doi: 10.1149/1.1837614 CrossRefGoogle Scholar
  6. 6.
    Y.H. Seo, K.S. Nahm, E.-K. Suh, H.J. Lee, Y.G. Hwang, J. Vac. Sci. Technol. A 15, 2226 (1997). doi: 10.1116/1.580538 CrossRefADSGoogle Scholar
  7. 7.
    J.-H. Boo, D.-C. Lim, S.-B. Lee, K.-W. Lee, M.M. Sung, Y. Kim et al., J. Vac. Sci. Technol. B 21, 1071 (2003). doi: 10.1116/1.1585073 CrossRefGoogle Scholar
  8. 8.
    D.-C. Lim, H.-G. Jee, J.W. Kim, J.-S. Moon, S.-B. Lee, S.S. Choi et al., Thin Solid Films 459, 7 (2004). doi: 10.1016/j.tsf.2003.12.140 CrossRefADSGoogle Scholar
  9. 9.
    Y. Abe, J. Komiyama, S. Suzuki, H. Nakanishi, J. Cryst. Growth 283, 41 (2005). doi: 10.1016/j.jcrysgro.2005.05.047 CrossRefADSGoogle Scholar
  10. 10.
    Q. Wahab, R.C. Glass, I.P. Ivanov, J. Birch, J.-E. Sundgren, M. Willander, J. Appl. Phys. 74, 1663 (1993). doi: 10.1063/1.354818 CrossRefADSGoogle Scholar
  11. 11.
    A.V. Hamz, M. Balooch, M. Moalem, Surf. Sci. 317, L1129 (1994). doi: 10.1016/0039-6028(94)90279-8 CrossRefGoogle Scholar
  12. 12.
    S. Henke, B. Stritzker, B. Rauschenbach, J. Appl. Phys. 78, 2070 (1995). doi: 10.1063/1.360184 CrossRefADSGoogle Scholar
  13. 13.
    D. Chen, R. Workman, D. Sarid, Surf. Sci. 344, 23 (1995). doi: 10.1016/0039-6028(95)00840-3 CrossRefADSGoogle Scholar
  14. 14.
    L. Aversa, R. Verucchi, A. Boschetti, A. Podesta, P. Milani, S. Iannotta, Mater. Sci. Eng. B 101, 169 (2003). doi: 10.1016/S0921-5107(02)00703-1 CrossRefGoogle Scholar
  15. 15.
    T. Matsumoto, M. Kiuchi, S. Sugimoto, S. Goto, Surf. Sci. 493, 426 (2001). doi: 10.1016/S0039-6028(01)01249-3 CrossRefADSGoogle Scholar
  16. 16.
    M. Kiuchi, T. Matsutani, T. Takeuchi, T. Matsumoto, S. Suhimoto, S. Goto, Surf. Coat. Tech. 177–178, 260 (2004). doi: 10.1016/j.surfcoat.2003.09.003 CrossRefGoogle Scholar
  17. 17.
    N. Tsubouchi, A. Chayahara, Y. Mokuno, A. Kinomura, Y. Horino, Appl. Surf. Sci. 212–213, 920 (2003). doi: 10.1016/S0169-4332(03)00091-6 CrossRefGoogle Scholar
  18. 18.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985), p. 5Google Scholar
  19. 19.
    S. Hishita, K. Oyoshi, S. Suehara, T. Aizawa, Nucl. Instrum. Methods Phys. Res. B148, 549 (1999)Google Scholar
  20. 20.
    S. Hishita, K. Oyoshi, S. Suehara, T. Aizawa, Key Eng. Mater. 169–170, 179 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Hishita, T. Aizawa, S. Suehara, H. Haneda, Appl. Surf. Sci. 169–170, 296 (2001). doi: 10.1016/S0169-4332(00)00677-2 CrossRefGoogle Scholar
  22. 22.
    S. Hishita, T. Aizawa, S. Suehara, H. Haneda, JAERI-Conf 2003-001, 223 (2003)Google Scholar
  23. 23.
    L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985). doi: 10.1016/0168-583X(85)90762-1 CrossRefADSGoogle Scholar
  24. 24.
    T. Aizawa, R. Souda, Y. Ishizawa, H. Hirano, T. Yamada, C. Oshima, Surf. Sci. 237, 194 (1990). doi: 10.1016/0039-6028(90)90531-C CrossRefADSGoogle Scholar
  25. 25.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Minnesota, 1995), p. 57Google Scholar
  26. 26.
    J.-S. Luo, W.-T. Lin, Appl. Phys. Lett. 69, 916 (1996). doi: 10.1063/1.116942 CrossRefADSGoogle Scholar
  27. 27.
    J.F. Ziegler, J.P. Biersack, SRIM 2006.01 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Sensor Materials CenterNational Institute for Materials ScienceIbarakiJapan

Personalised recommendations