Advertisement

Journal of Electroceramics

, 23:382 | Cite as

Electrochemical evaluation of La1 − x Ca x CoO3 cathode material for zinc air batteries application

  • Seung-Wook Eom
  • Se-Young Ahn
  • Ik-Jun Kim
  • Yang-Kook Sun
  • Hyun-Soo Kim
Article

Abstract

We synthesized nano-sized La1 − x Ca x CoO3 (x = 0.1–0.4) cathode catalysts for zinc air secondary batteries by the citrate method, and measured electrochemical characteristics of the cathodes according to the cathode catalyst’s calcium content. We heat treated the prepared precursor at a calcination temperature of 700°C, and examined it by XRD analysis and electrochemical evaluation. We examined the prepared La1 − x Ca x CoO3 catalyst powder’s oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and cycle-stability performance. When we consider ORR, OER and cycle-stability performance simultaneously, La0.9Ca0.1MnO3 catalyst showed the best performance because of its lowest voltage deference between charge and discharge, and its lowest degradation according to cycle.

Keywords

Zinc air batteries Oxygen reduction Oxygen evolution Cathode 

References

  1. 1.
    O. Haas, F. Holzer, S. Muller, J.M. McBreen, X.Q. Yang, X. Sun, M. Balasubramanian, Electrochimica. Acta. 47, 365 (2002) DOI  10.1016/S0013-4686(02)00241-4 CrossRefGoogle Scholar
  2. 2.
    V. Hermann, D. Dutriat, S. Muller, Ch. Comninellis, Electrochimica. Acta. 46, 365 (2000) DOI  10.1016/S0013-4686(00)00593-4 CrossRefGoogle Scholar
  3. 3.
    N. Wu, W. Liu, S. Su, Electrochimica. Acta. 48, 1567 (2003) DOI  10.1016/S0013-4686(03)00033-1 CrossRefGoogle Scholar
  4. 4.
    O. Haas, F. Holzer, K. Muller, S. Muller, Fundamentals Technology and Applications (John Wiley & Sons, Ltd., England, 2003)Google Scholar
  5. 5.
    L. Jorissen, J. Power Sources 155, 23 (2006) DOI  10.1016/j.jpowsour.2005.07.038 CrossRefGoogle Scholar
  6. 6.
    W. Zipprich, S. Waschilewski, F. Rocholl, H.D. Wiemhofer, Solid state Ionics 101–103 (1997)Google Scholar
  7. 7.
    S.W. Eom, S.Y. Ahn, C.W. Lee, Y.K. Sun, M.S. Yun, Solid State Phenomena 124–126, 1055 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Weidenkaff, S.G. Ebbinghaus, T. Lippert, M.J. Montenegro, C. Soltmann, R. Wessicken, Crystal Engineering 5, 449 (2002) DOI  10.1016/S1463-0184(02)00056-4 CrossRefGoogle Scholar
  9. 9.
    A. Kahoul, A. Hammouche, F. Naamoune, P. Chartier, G. Poillerat, J.F. Koenig, Materials Research Bulletin 35, 1955 (2000) DOI  10.1016/S0025-5408(00)00395-0 CrossRefGoogle Scholar
  10. 10.
    M. Bursell, M. Pirjamali, Y. Kiros, Electrochimica Acta 47, 1651 (2002) DOI  10.1016/S0013-4686(02)00002-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Seung-Wook Eom
    • 1
    • 2
  • Se-Young Ahn
    • 1
  • Ik-Jun Kim
    • 1
  • Yang-Kook Sun
    • 2
  • Hyun-Soo Kim
    • 1
  1. 1.Battery Research Group, Korea Electrotechnology Research Institute (KERI)ChangwonKorea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations