Journal of Electroceramics

, Volume 24, Issue 1, pp 15–19 | Cite as

Nanoscale engineering of ferroelectric functionality



In epitaxial films of perovskite ferroelectrics, functionality can be controlled by size-strain-surface effects. Experimental evidence of such a possibility is demonstrated in epitaxial heterostructures of BaTiO3 thin films and of (Ba,Sr)TiO3 superlattices grown by pulsed laser deposition on La0.5Sr0.5CoO3/MgO (001). In epitaxial BaTiO3 films, temperature of phase transition is shown to be a function of in-plane biaxial strain and film thickness. In epitaxial (Ba,Sr)TiO3 superlattices, the dielectric permittivity, tunability, and temperature of phase transition are shown to be a function of strain and superlattice period. The technological and principal problems limiting nanoscale engineering of ferroelectric functionality are also discussed.


Perovskite Ferroelectric Epitaxial Functionality 



Authors acknowledge Graduate School in Electronics, Telecommunications and Automation (I.J.), Infotech Oulu Graduate School (M.P.), Academy of Finland (project no 118250), and EU FP6 (project no 027468) for financial support.


  1. 1.
    K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, Basel, 2000), p. 308, ISBN 0-8247-8133-3Google Scholar
  2. 2.
    M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005) and references thereinCrossRefADSGoogle Scholar
  3. 3.
    N. Setter et al., J. Appl. Phys. 100, 051606 (2006)CrossRefADSGoogle Scholar
  4. 4.
    N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)CrossRefADSGoogle Scholar
  5. 5.
    N.A. Pertsev, V.G. Koukhar, Phys. Rev. Lett. 84, 3722 (2000)CrossRefPubMedADSGoogle Scholar
  6. 6.
    V.G. Koukhar, N.A. Pertsev, R. Waser, Phys. Rev. B 64, 214103 (2001)CrossRefADSGoogle Scholar
  7. 7.
    O. Dieguez, S. Tinte, A. Antons, C. Bungaro, J.B. Neaton, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 69, 212101 (2004)CrossRefADSGoogle Scholar
  8. 8.
    J.S. Speck, W. Pompe, J. Appl. Phys. 76, 466 (1994)CrossRefADSGoogle Scholar
  9. 9.
    K.J. Choi et al., Science 306, 1005 (2004)CrossRefPubMedADSGoogle Scholar
  10. 10.
    M. Tyunina, J. Levoska, I. Jaakola, Phys. Rev. B 75, 140102(R) (2007)CrossRefADSGoogle Scholar
  11. 11.
    M. Tyunina, J. Phys. Condens. Matter 18, 5725 (2006)CrossRefADSGoogle Scholar
  12. 12.
    M.D. Glinchuk, A.N. Morozovska, J. Phys. Condens. Matter 16, 3517 (2004)CrossRefADSGoogle Scholar
  13. 13.
    M.D. Glinchuk, A.N. Morozovska, E.A. Eliseev, J. Appl. Phys. 99, 144102 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Tabata, H. Tanaka, T. Kawai, Appl. Phys. Lett. 65, 1970 (1994)CrossRefADSGoogle Scholar
  15. 15.
    T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, T. Kawai, J. Appl. Phys. 91, 2290 (2002)CrossRefADSGoogle Scholar
  16. 16.
    H.N. Lee, H.M. Christen, M.F. Chisholm, C.M. Rouleau, D.H. Lowndes, Nature (London) 433, 395 (2005)CrossRefADSGoogle Scholar
  17. 17.
    A.L. Roytburd, S. Zhong, S.P. Alpay, Appl. Phys. Lett. 87, 092902 (2005)CrossRefADSGoogle Scholar
  18. 18.
    V.A. Stephanovich, I.A. Luk, yanchuk, M.G. Karkut, Phys. Rev. Lett. 94, 047601 (2005)CrossRefPubMedADSGoogle Scholar
  19. 19.
    K. Johnston, X. Huang, J.B. Neaton, K.M. Rabe, Phys. Rev. B 71, 100103(R) (2005)CrossRefADSGoogle Scholar
  20. 20.
    I. Jaakola, J. Levoska, M. Tyunina, J. Appl. Phys. 102, 014108 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M. Tyunina, I. Jaakola, J. Levoska, M. Plekh, Phys. Rev. B 76, 134107 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Microelectronics and Materials Physics LaboratoriesUniversity of OuluOuluFinland

Personalised recommendations