Journal of Electroceramics

, Volume 22, Issue 1–3, pp 67–72 | Cite as

The effects of LSM coating on 444 stainless steel as SOFC interconnect

  • Hojune Hwang
  • Gyeong Man Choi


The effect of oxide (La0.9Sr0.1MnO3, LSM) coating on the commercial stainless steel (STS444) interconnect as SOFC interconnect was examined by measuring the polarization resistance (R p) of LSCF (La0.6Sr0.4Co0.2Fe0.8) cathodes of various electrolyte-supported cells (La0.9Sr0.1Ga0.8Mg0.2 [LSGM], Ce0.9Gd0.1O2 [GDC10], or 8 mol% Y2O3-doped ZrO2 [8YSZ]). The electrochemical impedance of LSCF cathodes was monitored during ∼140 h in air at 600 and 700°C to determine the cathodic R p values. With or without interconnect contacts, the magnitude of cathodic R p value of LSGM electrolyte was similar to that of GDC electrolyte and much smaller than that of YSZ electrolyte. However, no apparent difference in the rate of increase was observed among the cathodes on the different electrolytes. Although the R p value of the LSCF cathode in contact with LSM-coated STS444 was much reduced from that with uncoated STS444, the coating was not perfect to prevent the Cr evaporation from the interconnect and thus to avoid the degradation of LSCF cathode. Thus new coating methods or materials are needed to protect the LSCF cathode from the Cr poisoning.


Stainless steel Interconnect Cathode Chromium SOFC 



This study was supported by Core Technology of Fuel Cell Program, MOCIE, Korea. RIST (Korea) provided the both LSM-coated and uncoated 444 stainless steel.


  1. 1.
    W.Z. Zhu, S.C. Deevi, Mater. Res. Bull. 38, 957–972 (2003)CrossRefGoogle Scholar
  2. 2.
    K. Fujita, T. Hashimoto, K. Ogasawara, H. Kameda, Y. Matsuzaki, T. Sakurai, J. Power Sources 131, 270–277 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Matsuzaki, I. Yasuda, J. Electrochem. Soc. 148, A126–A131 (2001)CrossRefGoogle Scholar
  4. 4.
    S.P. Jiang, J.P. Zhang, X.G. Zheng, J. Eur. Ceram. Soc. 22, 361–373 (2002)CrossRefGoogle Scholar
  5. 5.
    Z. Yang, J.S. Hardy, M.S. Walker, G. Xia, S.P. Simner, J.W. Stevenson, J. Electrochem. Soc. 151(11), A1825–1831 (2004)CrossRefGoogle Scholar
  6. 6.
    Z. Yang, G. Xia, J.W. Stevenson, Electrochem. Solid-State Lett. 8, A168 (2005)CrossRefGoogle Scholar
  7. 7.
    Z. Yang, G. Xia, S.P. Simner, J.W. Stevenson, J. Electrochem. Soc. 152(9), A1896–1901 (2005)CrossRefGoogle Scholar
  8. 8.
    S.P. Simner, M.D. Anderson, G.G. Xia, Z. Yang, L.R. Pederson, J.W. Stevenson, J. Electrochem. Soc. 152(4), A740–A745 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Solid State Ion. 176, 425–433 (2005)CrossRefGoogle Scholar
  10. 10.
    W. Qu, L. Jian, D.G. Ivey, J.M. Hill, J. Power Sources 157, 335–350 (2006)CrossRefGoogle Scholar
  11. 11.
    X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. DeJonghe, Solid State Ion. 176, 425–433 (2005)CrossRefGoogle Scholar
  12. 12.
    P.E. Gannon, C.T. Tripp, A.K. Knospe, C.V. Ramana, M. Deibert, R.J. Smith, V.I. Gorokhovsky, V. Shutthanandan, D. Gelles, Surf. Coat. Technol. 188–189, 55–61 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, J. Power Sources 171, 652–662 (2007)CrossRefGoogle Scholar
  14. 14.
    Z. Yang, G.G. Xia, G.D. Maupin, J.W. Stevenson, Surf. Coat. Technol. 201, 4476–4483 (2006)CrossRefGoogle Scholar
  15. 15.
    D.E. Alman, C.D. Johnson, W.K. Collins, P.D. Jablonski, J. Power Sources 168, 351–355 (2007)CrossRefGoogle Scholar
  16. 16.
    C. Collins, J. Lucas, T.L. Buchanan, M. Kopczyk, A. Kayani, P.E. Gannon, M.C. Deibert, R.J. Smith, D.S. Choi, V.I. Gorokhovsky, Surf. Coat. Technol. 201, 4467–4470 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Kurokawa, C.P. Jacobson, L.C. DeJonghe, S.J. Visco, Solid State Ion. 178, 287–296 (2007)CrossRefGoogle Scholar
  18. 18.
    T. Komatsu, H. Arai, R. Chiba, K. Nozawa, M. Arakawa, K. Sato, Electrochem. Solid-State Lett. 9, A9–A12 (2006)CrossRefGoogle Scholar
  19. 19.
    D.H. Kim, J.H. Jun, S.G. Kim, J.H. Jun, Journal of the Korean Ceramic Society 42, 833–841 (2005)CrossRefGoogle Scholar
  20. 20.
    T. Degitz, K. Dobler, Weld. J. 81, 50–52 (2002)Google Scholar
  21. 21.
    T. Kato, A. Momma, Y. Kaga, S. Nagata, Y. Kasuga, M. Kitase, Solid State Ion. 132, 287–295 (2000)CrossRefGoogle Scholar
  22. 22.
    K.B. Yoo, G.M. Choi, J. Eur. Ceram. Soc. 27, 4211–4214 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Kenjo, Y. Kanehira, Solid State Ion. 148, 1–14 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Nakada, H. Tsuda, K. Ohashi, J. Akedo, IEICE Trans. Electron. E90–C, 36–40 (2007)CrossRefGoogle Scholar
  25. 25.
    Y.D. Zhen, S.P. Jiang, A.I.Y. Tok, ECS Transactions 7, 263–269 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Fuel Cell Research Center and Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations