Advertisement

Journal of Electroceramics

, 23:185 | Cite as

Effects of various oxide fillers on physical and dielectric properties of calcium aluminoborosilicate-based dielectrics

  • Ik Jin Choi
  • Yong Soo Cho
Article

Abstract

Physical and dielectric properties of LTCC (low temperature co-fired ceramics) materials based on a typical calcium aluminoborosilicate glass and various fillers such as Al2O3, BaTiO3, CaTiO3, TiO2, ZrO2, MgO and SiO2 were investigated. Densification, crystallization and thermal and dielectric properties were found to strongly depend on the type of filler. The XRD patterns of Al2O3, BaTiO3, CaTiO3 and MgO samples demonstrated crystalline phases, CaAl2Si2O8, BaAl2Si2O8, CaTiSiO5 and CaMgSi2O6, respectively, as a result of firing at 850 °C. For the sample containing CaTiO3 filler, specifically, dielectric constant increased drastically to approximately 19.9. A high quality factor of >210 and a high TCE (temperature coefficient of expansion) of >8.5 ppm/°C were obtained for the composition containing MgO or SiO2. Near zero TCF (temperature coefficient of frequency) was obtained for the samples containing TiO2. The purpose of this work is to investigate the effects of various ceramic fillers on physical and dielectric properties and ultimately to provide the technical guidelines for the proper choice of filler in various LTCC systems.

Keywords

LTCC Dielectrics Dielectric constant Glass Filler 

References

  1. 1.
    Y.S. Cho, Y.H. Yoon, in Handbook of Advanced Electronic and Photonic Materials and Devices Vol 4, Ch. 5, ed. By H.S. Nalwa (Academic, New York, 2001)Google Scholar
  2. 2.
    O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A. Schiller, J. Eur. Ceram. Soc. 21, 1693 (2001)CrossRefGoogle Scholar
  3. 3.
    M.A. Rodriguez, P. Yang, P. Kotula, D. Dimos, J. Electroceram. 5(3), 217 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Kagata, R. Saito, H. Katsumura, J. Electroceram. 13, 277 (2004)CrossRefGoogle Scholar
  5. 5.
    Y.J. Seo, J.H. Jung, Y.S. Cho, J.C. Kim, N.K. Kang, J. Am. Ceram. Soc. 90(2), 649 (2007)CrossRefGoogle Scholar
  6. 6.
    J.H. Jean, C.R. Chang, R.L. Chang, T.H. Kuan, Mater. Chem. Phys. 40, 50 (1995)CrossRefGoogle Scholar
  7. 7.
    Y.J. Seo, D.J. Shin, Y.S. Cho, J. Am. Ceram. Soc. 89(7), 2352 (2005)Google Scholar
  8. 8.
    J.H. Jean, S. Lin, J. Mater. Res. 14(4), 1359 (1999)CrossRefADSGoogle Scholar
  9. 9.
    S.K. Kim, J.S. Park, J.S. An, K.S. Hong, J. Am. Ceram. Soc. 89, 902 (2006)CrossRefGoogle Scholar
  10. 10.
    G.H. Hwang, W.Y. Kim, H.J. Jeon, Y.S. Kim, J. Am.Ceram. Soc. 85, 2961 (2002)Google Scholar
  11. 11.
    S.X. Dai, R.F. Huang, D.L. Wilcox Sr., J. Am. Ceram. Soc. 85(4), 828 (2002)Google Scholar
  12. 12.
    Y.J. Choi, J.H. Park, J.H. Park, J.G. Park, J. Mater Lett. 58, 3102 (2004)CrossRefGoogle Scholar
  13. 13.
    H.J. Cha, D.H. Kang, Y.S. Cho, Mater. Res. Bull. 42, 265 (2007)CrossRefGoogle Scholar
  14. 14.
    C.L. Lo, J.G. Duh, B.S. Chiou, W.H. Lee, J. Am. Ceram. Soc. 85(9), 2230 (2002)CrossRefGoogle Scholar
  15. 15.
    L.C. Hoffman, “Crystallizable Dielectrics in Multilayer Structures for Hybrid Microcircuits: A Review”, in Advances in Ceramics, Vol. 26, Ceramic Substrates and Packages for Electronic Applications, ed. By M.F. Yan, K. Niwa, H.M. O’Bryan, W.S. Young (American Ceramic Society, Westerville, OH, 1989), pp. 249–253Google Scholar
  16. 16.
    C.R.S. Needs, International Society for Hybrid Microelectronics 1994 Proceedings. (ISHM, VA, 1994), p. 173Google Scholar
  17. 17.
    R.E. Doty, and J.J. Vajo, International Society for Hybrid Microelectronics 1995 Proceedings, (ISHM, VA, 1995), p. 465Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations