Journal of Electroceramics

, Volume 20, Issue 2, pp 95–105 | Cite as

Electrical properties of PZT piezoelectric ceramic at high temperatures

  • Z. Gubinyi
  • C. Batur
  • A. Sayir
  • F. Dynys


Advanced aeronautic and space structures need active components that can function at high frequencies and temperatures. Piezoelectric materials can provide frequency response but their use at elevated temperatures is limited. The reason for the lack of insertion of piezoelectric for high temperature active component and sensors are two fold. First, the database of piezoelectric properties that describe the piezoelectric constants is lacking for high temperatures engineering applications. Most studies measure the dielectric constants to determine the Curie temperature but do not provide piezoelectric coefficients as a function of temperature. Second, piezoelectric materials with Curie temperature (T C) exceeding 500 °C are sought for aeronautics and aerospace applications. This investigation describes a measurement system that captures the impedance dependence upon temperature for piezoelectric materials. Commercially available lead zirconate titanate (PZT) was studied as to determine the piezoelectric activity to define the operating envelope with respect to temperature. The elastic properties \(\left( {c_{ijkl}^E } \right)\), piezoelectric coefficients \(\left( {e _{ik}^S } \right)\), dielectric properties \(\left( {\varepsilon _{ik}^S } \right)\), and electro-mechanical coupling factors were determined as a function of temperature. The coupling factor k 33 was found to be relatively constant to 200 °C and exhibit slight temperature dependence above 200 °C. The temperature sensitivity for both piezoelectric coefficient and electromechanical coupling factor were very small; the slopes \({{\Delta d_{31}^T } \mathord{\left/ {\vphantom {{\Delta d_{31}^T } {d_{31}^T }}} \right. \kern-\nulldelimiterspace} {d_{31}^T }}\) and Δk 33/k 33 were found to be 0.01 and (−0.07) respectively in the range of 120 to 200 °C. This measurement technique will populate databases that describe the piezoelectric properties of commercially available PZT piezoelectric materials. It can also facilitate the assessment of new piezoelectric materials that are currently being developed for higher temperature applications.


High temperature PZT piezoceramic Changes in electrical and mechanical properties with respect to temperature 



Authors acknowledge and greatly appreciate the support from Case Western University/AFOSR subcontract F49620-03-1-0128.


  1. 1.
    H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969)Google Scholar
  2. 2.
    IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987. (The Institute of Electrical and Electronics Engineer, 1988)Google Scholar
  3. 3.
    J.W. Waanders, Piezoelectric Ceramics Properties and Applications, 1st edn. (Philips Components, Eidenhoven, Netherlands, 1991)Google Scholar
  4. 4.
    S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, Resonance Analysis of High Temperature Piezoelectric Materials for Actuation and Sensing, Paper 5387-58, Proceedings of the SPIE Smart Structures Conference San Diego, CA., Mar 14–18. 2004, SPIE Vol. 5387Google Scholar
  5. 5.
    A.H. Meitzler, H.M. O’Bryan Jr., H.F. Tiersten, Definition and Measurement of radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variations in Poisson’s Ratio. IEEE Transactions on Sonics and Ultrasonics, SU-20, July 1973, pp 233–239Google Scholar
  6. 6.
    T.L. Jordan, Z. Ounaies, Piezoelectric Ceramics Characterization NASA/ CR-2001-211225 ICASE report to NASA Langley Research Center. Report No. 2001-28, September 2001Google Scholar
  7. 7.
    Agilent, 4294A Precision Impedance Analyzer Operation Manual, 6th edn. (Agilent Technologies Japan, Ltd. Kobe Instrument Division, Part No. 04294-90050, November 2002)Google Scholar
  8. 8.
    Piezo Kinetics Incorporated, website:
  9. 9.
    APC International Ltd., website:
  10. 10.
    K. Okada, T. Sekino, Agilent Technologies Impedance Measurement Handbook, December 2003Google Scholar
  11. 11.
    J. Kocbach, Finite Element Modeling of Ultrasonic Piezoelectric Transducers; Influence of Geometry and Material Parameters on Vibration, Response Functions and Radiated Field, PhD Dissertation, the University of Bergen Department of Physics, September 2000Google Scholar
  12. 12.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  13. 13.
    A. Safari, R.K. Panda, V.F. Janas, Ferroelectric Ceramics: Processing, Properties and Applications (Department of Ceramic Science and Engineering, Rutgers University, Piscataway NJ, 1995) Google Scholar
  14. 14.
    Y. Xi, C. Zhili, L.E. Cross, J. Appl. Phys. 54(6), 3399–3403 (1983)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, D.-Y. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRefGoogle Scholar
  16. 16.
    D. Damjanovic, R.E. Newnham, J. Intell. Mater. Syst. Struct. 3, 190–208 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Sherrit, G. Yang, H.D. Wiederick, B.K. Mukherjee, Temperature Dependence of the Dielectric, Elastic and Piezoelectric Material Constants of Lead Zirconate Titanate Ceramics. Proc., of Int. Conf. on Smart Materials Structure and Systems, 7–10 July, 1999, Bangalore India, pp. 121–126Google Scholar
  18. 18.
    W. Ren, L. Han, R. Wicks, L. Yang, B.K. Mukherjee, Electric-field induced phase transitions of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Smart Structures Materials, Active Materials: Behavior Mechanics, SPIE Proc. 5761, 272–278 (2005)Google Scholar
  19. 19.
    W. Ren, S.-F. Liu, B.K. Mukherjee, Appl. Phys. Lett. 80(17), 3174–3176 (2002)CrossRefGoogle Scholar
  20. 20.
    S. Zhang, D.-J. Jeong, Q. Zhang, T.R. Shrout, J. Cryst. Growth 247, 131–136 (2003)CrossRefGoogle Scholar
  21. 21.
    D.S. Campbell, A.M. MacSwan, Br. J. Appl. Phys. 12, 188–192 (1961)CrossRefGoogle Scholar
  22. 22.
    D.A. Berlincourt, D.R. Curran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers Physical Acoustics – Principles and methods, Vol. I – Part A, ed. by W.P. Mason (Academic, New York, 1964)Google Scholar
  23. 23.
    R.C. Turner, P.A. Fuierer, R.E. Nenwham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994)CrossRefGoogle Scholar
  24. 24.
    D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)CrossRefGoogle Scholar
  25. 25.
    M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry, L.E. Cross, J. Appl. Phys. 62(8), 3331–3338 (1987)CrossRefGoogle Scholar
  26. 26.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63–86 (1989)Google Scholar
  27. 27.
    M.-H. Berger, A. Sayir, F. Dynys, P. Berger, Solid State Ion. 177(26–32), 2339–2345 (2006)CrossRefGoogle Scholar
  28. 28.
    W.L. Warren, D. Dimos, G.E. Pike, K. Vaheusden, Appl. Phys. Lett. 67(12), 1689–1691 (1995)CrossRefGoogle Scholar
  29. 29.
    W.L. Warren, K. Vaheusden, D. Dimos, G.E. Pike, B. Tuttle, J. Am. Ceram. Soc. 79(2), 536–538 (1996)CrossRefGoogle Scholar
  30. 30.
    P.V. Lambeck, G.H. Jonker, Ferroelectrics 22, 729–734 (1978)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AkronAkronUSA
  2. 2.NASA Glenn Research CenterClevelandUSA

Personalised recommendations