Journal of Electroceramics

, Volume 20, Issue 2, pp 89–94 | Cite as

Effects of MnO2 addition on microstructure and electrical properties of (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics

  • Xiao-Juan Li
  • Qiang Wang
  • Quan-Lu Li


In this letter, MnO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT-6) lead-free piezoelectric ceramics were synthesized by solid state reaction, and the microstructure and electrical properties of the ceramics were investigated. X-ray diffraction (XRD) reveals that all specimens take on single perovskite type structure, and the diffraction peaks shift to a large angle as the MnO2 addition increases. Scanning electron microscopy shows that the grain sizes increases, and then decreases with increasing the MnO2 content. The experiment results indicate that the electrical properties of ceramics are significantly influenced by the MnO2 content, and the ceramics with homogeneous microstructure and excellent electrical properties are obtained with addition of 0.3 wt% MnO2 and sintered at 1160°C. The piezoelectric constant (d33), the electromechanical coupling factor (k p ), the dissipation factor (tan δ) and the dielectric constant (ɛ r ) reach 160 pC/N, 0.29, 0.026 and 879, respectively. These excellent properties indicate that the MnO2-doped BNBT-6 ceramics can be used for actuators.


BNBT-6 ceramic MnO2 doping Solid state reaction Microstructure Electrical properties 



This work was financially supported by the Natural Science Foundation of China (Grant No. 10374064) and Education Office Science Foundation of Shannxi province, China (Grant No.03JK061).


  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  2. 2.
    T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)CrossRefGoogle Scholar
  3. 3.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Kraink, Sov. Phys. Solid State 2, 2651–2653 (1961)Google Scholar
  4. 4.
    S.C. Zhao, G.R. Li, A.L. Ding, T.B. Wang, Q.R. Yin, J. Phys. D: Appl. Phys. 39, 2277–2281 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(Part 1 No. 9B) 2236–2239 (1991)CrossRefGoogle Scholar
  6. 6.
    D.L. West, D.A. Payne, J. Am. Ceram. Soc. 86, 192–194 (2003)CrossRefGoogle Scholar
  7. 7.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91–93 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Chen, Y.M. Li, Q. Xu, J. Zhou, J. Electroceram. 15, 229–235 (2005)CrossRefGoogle Scholar
  9. 9.
    Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5–9 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954–2958 (1997)CrossRefGoogle Scholar
  11. 11.
    J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sensors Actu. A 126, 41–47 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Pengpat, S. Hanphimol, S. Eitssayeam, U. Intatha, G. Rujijanagul, T. Tunkasiri, J Electroceram. 16, 301–305 (2006)CrossRefGoogle Scholar
  13. 13.
    H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett. 58, 1194–1198 (2004)CrossRefGoogle Scholar
  14. 14.
    B.J. Chu, G.R. Li, Q.R. Yin, W.Z. Zhang, D.R. Chen, Acta Phys. Sin. 50, 2012–2016 (2001)Google Scholar
  15. 15.
    X.X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395–399 (2003)CrossRefGoogle Scholar
  16. 16.
    S.J. Wu, Q. Xu, X.Z. Zhao, T. Liu, Y.M. Li, Mater. Lett. 60, 1453–1458 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Nagata, M. Yoshida, Y.Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7404 (2003)CrossRefGoogle Scholar
  18. 18.
    Y.M. Li, W. Chen, Q. Xu, J. Zhou, X.Y. Gu, Materials Letters 59, 1361–1364 (2005)CrossRefGoogle Scholar
  19. 19.
    S.J. Zhang, T.R. Shrout, H. Nagata, et al. IEEE Trans. Ultrason Ferroelectr. Freq. Control, 54, 910 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Kamiya, T. Suzuki, T. Tsurami, Jpn. J. Appl. Phys. 31, 3058–3060 (1992)CrossRefGoogle Scholar
  21. 21.
    IEEE Standard on Piezoelectricity. (American National Standards Institute, Washington, DC, 1976)Google Scholar
  22. 22.
    H.L. Du, Z.B. Pei, W.C. Zhou, F. Luo, S.B. Qu, Mater. Sci. Eng. A 421, 286–289 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Nagata, T. Takenka, J. Eur. Ceram. Soc. 21, 1299–1320 (2001)CrossRefGoogle Scholar
  24. 24.
    L.S. He, C.E. Li, J. Mater. Sci. 35, 2477–2480 (2000)CrossRefGoogle Scholar
  25. 25.
    S.J. Zhang, R. Xia, T. R. Shrout, Mater. Sci. Eng. B129, 131 (2006)CrossRefGoogle Scholar
  26. 26.
    P. Roy-Chowdhury, S.B. Deshpande, J. Mater. Sci. 22, 2209–2211 (1987)CrossRefGoogle Scholar
  27. 27.
    W. L. Zhong, Physics of Ferroelectrics. (Science Press, 1996), pp. 274–285Google Scholar
  28. 28.
    T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Jpn. J. Appl. Phys. 31, 3058–3061 (1992)CrossRefGoogle Scholar
  29. 29.
    Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, Mater. Sci. Eng. B 116, 104–108 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China
  2. 2.Hefei High Magnetic Field LaboratoryChinese Academy of ScienceHefeiPeople’s Republic of China
  3. 3.School of Physics and Information TechnologyShannxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations