Journal of Electroceramics

, Volume 20, Issue 1, pp 21–25 | Cite as

Phase formations during mechanochemical synthesis of PbTiO3

  • I. Szafraniak-Wiza
  • B. Hilczer
  • A. Pietraszko
  • E. Talik


Lead titanate nanopowders were fabricated by mechanochemical synthesis from lead oxide and titanium dioxide. The milling process has been carefully investigated by X-ray diffraction and X-ray excited photoelectron spectroscopy. The first traces of perovskite phase were detected after 5 h synthesis. It was found that intermediated phases (Ti10O18 and Pb3O4) have been formed at the early stage of synthesis. The 50 h milling results in single perovskite phase with average crystallite size of 20 nm.


Mechanochemical synthesis Lead titanate Perovskite structure 



This work was partially founded by Polish Ministry of Science (PBZ-MIN-012/KBN/2004) and European Commission (POLECER G5RT-CT-2001-05024).


  1. 1.
    J. M. Xue, D. M. Wan, S. E. Lee, J. Wang, J. Am. Ceram. Soc. 82, 1689 (1999)CrossRefGoogle Scholar
  2. 2.
    H. A. M. van Hak, W. A. Groen, S. Maassen, W. C. Keur, J. Eur. Ceram. Soc. 21, 1689 (2001)CrossRefGoogle Scholar
  3. 3.
    L. B. Kong, J. Ma, W. Zhu, O. K. Tan, Mater. Lett. 52, 378 (2002)CrossRefGoogle Scholar
  4. 4.
    V. Pavlović, M. V. Nikolić, V. B. Pavlović, N. Labus, L. Živković, B. D. Stojanović, Ferroelectrics 319, 75 (2005)CrossRefGoogle Scholar
  5. 5.
    J. M. Xue, Z. H. Zhou, J. Wang, in Encyclopedia of Nanoscience and Nanotechnology, vol. 6, ed. by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004), pp. 417–433Google Scholar
  6. 6.
    J. Wang, D. Wan, J. Xue, US Patent 6627104 (2003-09-30)Google Scholar
  7. 7.
    K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000)Google Scholar
  8. 8.
    I. Szafraniak, M. Połomska, B. Hilczer, E. Talik, L. Kępiński, Ferroelectrics 336, 279 (2006)CrossRefGoogle Scholar
  9. 9.
    ICDD Diffraction Date, International Center for Powder Diffraction (1997)Google Scholar
  10. 10.
    S. Chattopadhyay, P. Ayyub, V. R. Palkar, M. Multani, Phys. Rev. B 52, 13177 (1995)CrossRefGoogle Scholar
  11. 11.
    B. Jiang, L. A. Bursill, Phys. Rev. B 60, 9978 (1999)CrossRefGoogle Scholar
  12. 12.
    B. Jiang, J. L Peng, L. A. Bursill, W. L. Zhong, J. Appl. Phys. 87, 3462 (2000)CrossRefGoogle Scholar
  13. 13.
    E. K. Akdogan, C. J. Rawn, W. D. Porter, E. A. Payzant, A. Safari, J. Appl. Phys. 97, 084305 (2005)CrossRefGoogle Scholar
  14. 14.
    R. J. Nelmes, W. F. Kuhs, Solid State Commun. 54, 721 (1985)CrossRefGoogle Scholar
  15. 15.
    A. I. Akimov, G. K. Savchuk, V. A. Rubtsov, A. K. Letko, Crystallogr. Rep. 48, 239 (2003)CrossRefGoogle Scholar
  16. 16.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc, Minnesota, 1995)Google Scholar
  17. 17.
    R. J. Cole, N. J. Brooks, P. Weightman, Phys. Rev. Lett. 78, 3777 (1997)CrossRefGoogle Scholar
  18. 18.
    J. Chen, J. Lian, L. M. Wang, W. Pan, Phys. Rev. Lett. 88, 105901 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • I. Szafraniak-Wiza
    • 1
    • 2
  • B. Hilczer
    • 2
  • A. Pietraszko
    • 3
  • E. Talik
    • 4
  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland
  2. 2.Institute of Molecular PhysicsPolish Academy of SciencesPoznańPoland
  3. 3.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland
  4. 4.Institute of PhysicsSilesian UniversityKatowicePoland

Personalised recommendations