Journal of Electroceramics

, Volume 22, Issue 1–3, pp 257–262 | Cite as

Enhancement of dielectric properties by optimization of sintering condition in tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics



In this work, polycrystalline Ba5SmTi3Nb7O30 tungsten–bronze structured ferroelectric ceramics were synthesized by solid-state reaction technique at different sintering temperatures and durations. The X-ray diffractograms reveal the formation of the compounds in orthorhombic crystal system. The density of the compound is observed to increase with increase in sintering temperature and duration. Scanning electron microscopy (SEM) has been used for the microstructural investigation. Detailed dielectric properties of the compounds have been studied as a function of frequency and temperature. The variations of dielectric constant \(\left( {\varepsilon \prime _r } \right)\) with temperature show that the compounds undergo a diffuse type ferro-paraelectric phase transition. The dielectric constant is found to increase with the increasing sintering temperature and duration. In all the samples, the variation of dielectric loss (tan δ) with temperature is observed to be almost constant initially but it increases as temperature is increased and a peak is observed only when the material is sintered at higher temperature for longer duration. The frequency dependence of dielectric constant and loss shows a decreasing trend up to nearly 10 kHz and beyond this frequency there is almost no variation. Also, the diffusivities of the samples have been calculated and it is found to increase with increasing sintering temperature and duration.


Tungsten–bronze structure Sintering temperature and duration Dielectric properties Diffusivity 


  1. 1.
    B.K. Wul, L.M. Goldman, C.R. Acad. Sci. URSS 46, 133(1945)Google Scholar
  2. 2.
    I. Coondoo, A.K. Jha, S.K. Agarwal, N.C. Soni, J. Electroceram 16, 393(2006)CrossRefGoogle Scholar
  3. 3.
    I. Coondoo, A.K. Jha, S.K. Agarwal, J. Eur. Cer. Soc 27, 253(2007)CrossRefGoogle Scholar
  4. 4.
    V. Shrivastava, A.K. Jha, R.G. Mendiratta, Solid State Comm 133, 125(2005)CrossRefADSGoogle Scholar
  5. 5.
    C.F.G. Stenger, A.J. Burggraaf, J. Phys. Chem. Solids 41, 17(1980)CrossRefADSGoogle Scholar
  6. 6.
    C.F.G. Stenger, A.J. Burggraaf, J. Phys. Chem. Solids 41, 25(1980)CrossRefADSGoogle Scholar
  7. 7.
    K.S. Singh, R. Sati, R.N.P. Choudhary, J. Mater. Sci. Lett 11, 788(1992)CrossRefGoogle Scholar
  8. 8.
    R.R. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, W.K. Cory, Ferroelectrics 87, 167(1998)Google Scholar
  9. 9.
    R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull 25, 959(1990)CrossRefGoogle Scholar
  10. 10.
    R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull 27, 677(1992)CrossRefGoogle Scholar
  11. 11.
    N. Wakiya, J.K. Wang, A. Saiki, K. Shinozaki, N. Mizutani, J. Eur. Ceram. Soc 19, 1071(1999)CrossRefGoogle Scholar
  12. 12.
    Z.X. Cheng, S.J. Zhang, G.Y. Zhou, J.H. Liu, J.R. Han, H.C. Chen, Mater. Res. Bull 35, 1107(2000)CrossRefGoogle Scholar
  13. 13.
    Y.K. Hwang, Y.U. Kwon, Mater. Res. Bull 32, 1495(1997)CrossRefGoogle Scholar
  14. 14.
    B. Tribotte, J.M. Haussonne, G. Desgardin, J. Eur. Ceram. Soc 19, 1105(1999)CrossRefGoogle Scholar
  15. 15.
    P.B. Jasmieson, S.C. Abrahams, L. Bernstein, J. Chem. Phys 48, 5048(1965)CrossRefADSGoogle Scholar
  16. 16.
    J.L. Mukherjee, J. Solid State Chem 24, 163(1978)CrossRefADSGoogle Scholar
  17. 17.
    H. Iwaski, Mater. Res. Bull 6, 251(1971)CrossRefGoogle Scholar
  18. 18.
    K.V. Masuno, J. Phys. Soc. Jpn 19, 323(1964)CrossRefADSGoogle Scholar
  19. 19.
    S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, H.N. Acharya, J. Phys. Chem. Solids 59, 737(1998)CrossRefADSGoogle Scholar
  20. 20.
    C. Dong, J. Appl. Cryst 32, 838(1999)CrossRefGoogle Scholar
  21. 21.
    H.T. Martirena, J.C. Burfoot, J. Phys. C: Solid State Phys 7, 3162(1976)Google Scholar
  22. 22.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mat. Sci 41, 369(2006)CrossRefADSGoogle Scholar
  23. 23.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, Mat. Chem. & Phys 82, 140(2003)CrossRefGoogle Scholar
  24. 24.
    F.A. Kröger, H.J. Vink, Solid State Phys 3, 307(1956)CrossRefGoogle Scholar
  25. 25.
    P. Goel, K.L. Yadav, Mat. Lett 60, 3183(2006)CrossRefGoogle Scholar
  26. 26.
    I.S. Zheludev, Physics of Crystalline Dielectrics, Vol I: Crystallography & Spontaneous Polarization (Plenum, New York (1971)Google Scholar
  27. 27.
    T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E.H. Poindexter, D.J. Keeble, Appl. Phys. Lett 77, 127(2000)CrossRefADSGoogle Scholar
  28. 28.
    W.P. Lu, X.Y. Mao, X.B. Chen, J. Appl. Phys 95, 1973(2004)CrossRefADSGoogle Scholar
  29. 29.
    W.P. Lu, J. Zhu, H. Sun, X.B. Chen, J. Mat. Res 20, 971(2005)CrossRefADSGoogle Scholar
  30. 30.
    R.C. Buchanan, Ceramic Materials for Electronics: Processing, Properties and Applications (Marcel Dekker, New York (1986), p. 38Google Scholar
  31. 31.
    Y. Noguchi, M. Miyayama, Appl. Phys. Lett 78, 1903(2001)CrossRefADSGoogle Scholar
  32. 32.
    A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228(2000)CrossRefADSGoogle Scholar
  33. 33.
    S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc 73, 3122(1990)CrossRefGoogle Scholar
  34. 34.
    V. Raghavan, Materials Science and Engineering (Prentice-Hall of India, New Delhi (2004), p. 194Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Thin Films & Materials Science Laboratory, Department of Applied PhysicsDelhi College of EngineeringDelhiIndia

Personalised recommendations