Skip to main content
Log in

Enhancement of dielectric properties by optimization of sintering condition in tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, polycrystalline Ba5SmTi3Nb7O30 tungsten–bronze structured ferroelectric ceramics were synthesized by solid-state reaction technique at different sintering temperatures and durations. The X-ray diffractograms reveal the formation of the compounds in orthorhombic crystal system. The density of the compound is observed to increase with increase in sintering temperature and duration. Scanning electron microscopy (SEM) has been used for the microstructural investigation. Detailed dielectric properties of the compounds have been studied as a function of frequency and temperature. The variations of dielectric constant \(\left( {\varepsilon \prime _r } \right)\) with temperature show that the compounds undergo a diffuse type ferro-paraelectric phase transition. The dielectric constant is found to increase with the increasing sintering temperature and duration. In all the samples, the variation of dielectric loss (tan δ) with temperature is observed to be almost constant initially but it increases as temperature is increased and a peak is observed only when the material is sintered at higher temperature for longer duration. The frequency dependence of dielectric constant and loss shows a decreasing trend up to nearly 10 kHz and beyond this frequency there is almost no variation. Also, the diffusivities of the samples have been calculated and it is found to increase with increasing sintering temperature and duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.K. Wul, L.M. Goldman, C.R. Acad. Sci. URSS 46, 133(1945)

    Google Scholar 

  2. I. Coondoo, A.K. Jha, S.K. Agarwal, N.C. Soni, J. Electroceram 16, 393(2006)

    Article  CAS  Google Scholar 

  3. I. Coondoo, A.K. Jha, S.K. Agarwal, J. Eur. Cer. Soc 27, 253(2007)

    Article  CAS  Google Scholar 

  4. V. Shrivastava, A.K. Jha, R.G. Mendiratta, Solid State Comm 133, 125(2005)

    Article  ADS  CAS  Google Scholar 

  5. C.F.G. Stenger, A.J. Burggraaf, J. Phys. Chem. Solids 41, 17(1980)

    Article  ADS  CAS  Google Scholar 

  6. C.F.G. Stenger, A.J. Burggraaf, J. Phys. Chem. Solids 41, 25(1980)

    Article  ADS  CAS  Google Scholar 

  7. K.S. Singh, R. Sati, R.N.P. Choudhary, J. Mater. Sci. Lett 11, 788(1992)

    Article  CAS  Google Scholar 

  8. R.R. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, W.K. Cory, Ferroelectrics 87, 167(1998)

    Google Scholar 

  9. R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull 25, 959(1990)

    Article  CAS  Google Scholar 

  10. R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull 27, 677(1992)

    Article  CAS  Google Scholar 

  11. N. Wakiya, J.K. Wang, A. Saiki, K. Shinozaki, N. Mizutani, J. Eur. Ceram. Soc 19, 1071(1999)

    Article  CAS  Google Scholar 

  12. Z.X. Cheng, S.J. Zhang, G.Y. Zhou, J.H. Liu, J.R. Han, H.C. Chen, Mater. Res. Bull 35, 1107(2000)

    Article  CAS  Google Scholar 

  13. Y.K. Hwang, Y.U. Kwon, Mater. Res. Bull 32, 1495(1997)

    Article  CAS  Google Scholar 

  14. B. Tribotte, J.M. Haussonne, G. Desgardin, J. Eur. Ceram. Soc 19, 1105(1999)

    Article  Google Scholar 

  15. P.B. Jasmieson, S.C. Abrahams, L. Bernstein, J. Chem. Phys 48, 5048(1965)

    Article  ADS  Google Scholar 

  16. J.L. Mukherjee, J. Solid State Chem 24, 163(1978)

    Article  ADS  CAS  Google Scholar 

  17. H. Iwaski, Mater. Res. Bull 6, 251(1971)

    Article  Google Scholar 

  18. K.V. Masuno, J. Phys. Soc. Jpn 19, 323(1964)

    Article  ADS  CAS  Google Scholar 

  19. S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, H.N. Acharya, J. Phys. Chem. Solids 59, 737(1998)

    Article  CAS  ADS  Google Scholar 

  20. C. Dong, J. Appl. Cryst 32, 838(1999)

    Article  CAS  Google Scholar 

  21. H.T. Martirena, J.C. Burfoot, J. Phys. C: Solid State Phys 7, 3162(1976)

    Google Scholar 

  22. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mat. Sci 41, 369(2006)

    Article  CAS  ADS  Google Scholar 

  23. C.K. Suman, K. Prasad, R.N.P. Choudhary, Mat. Chem. & Phys 82, 140(2003)

    Article  CAS  Google Scholar 

  24. F.A. Kröger, H.J. Vink, Solid State Phys 3, 307(1956)

    Article  Google Scholar 

  25. P. Goel, K.L. Yadav, Mat. Lett 60, 3183(2006)

    Article  CAS  Google Scholar 

  26. I.S. Zheludev, Physics of Crystalline Dielectrics, Vol I: Crystallography & Spontaneous Polarization (Plenum, New York (1971)

    Google Scholar 

  27. T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E.H. Poindexter, D.J. Keeble, Appl. Phys. Lett 77, 127(2000)

    Article  ADS  CAS  Google Scholar 

  28. W.P. Lu, X.Y. Mao, X.B. Chen, J. Appl. Phys 95, 1973(2004)

    Article  ADS  CAS  Google Scholar 

  29. W.P. Lu, J. Zhu, H. Sun, X.B. Chen, J. Mat. Res 20, 971(2005)

    Article  ADS  CAS  Google Scholar 

  30. R.C. Buchanan, Ceramic Materials for Electronics: Processing, Properties and Applications (Marcel Dekker, New York (1986), p. 38

    Google Scholar 

  31. Y. Noguchi, M. Miyayama, Appl. Phys. Lett 78, 1903(2001)

    Article  ADS  CAS  Google Scholar 

  32. A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228(2000)

    Article  ADS  CAS  Google Scholar 

  33. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc 73, 3122(1990)

    Article  CAS  Google Scholar 

  34. V. Raghavan, Materials Science and Engineering (Prentice-Hall of India, New Delhi (2004), p. 194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Ganguly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, P., Jha, A.K. & Deori, K.L. Enhancement of dielectric properties by optimization of sintering condition in tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. J Electroceram 22, 257–262 (2009). https://doi.org/10.1007/s10832-007-9337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9337-6

Keywords

Navigation