Advertisement

Journal of Electroceramics

, Volume 23, Issue 2–4, pp 116–120 | Cite as

Microwave dielectric properties of Mg4Nb2O9 ceramics produced by hydrothermal synthesis

  • Sung-woo Lim
  • Jaecheol Bang
Article

Abstract

Mg4Nb2O9 ceramics have been prepared by a hydrothermal synthesis in order to reduce the sintering temperature. The sintering and microwave dielectric properties of the hydrothermally processed Mg4Nb2O9 were studied under various sintering temperatures ranging from 900 to 1300°C. The highest Q×f o value of 26,069 GHz was obtained at the sintering temperature of 1300°C and is attributed to the increased density and appropriate grain growth. τ f value of −17.1 ppm/°C was improved by the addition of TiO2 and τ f value of 6.7 ppm/°C was obtained at 20 wt% TiO2. Chemical compatibility of Mg4Nb2O9 with Ag was tested to identity the possibility of using Mg4Nb2O9 for an LTCC application. Since any secondary phase was not observed in the XRD pattern of the mixtures of Mg4Nb2O9 and Ag powder heat treated at 900°C, it was considered that the Mg4Nb2O9 system is applicable to the multilayer microwave devices using Ag as an electrode.

Keywords

Hydrothermal synthesis Mg4Nb2O9 Microwave dielectric properties Sintering LTCC 

Notes

Acknowledgements

This work was supported by MOCIE (RTI04-01-02) through the BIT Wireless Communication Devices Regional Innovation Center at Soonchunhyang University.

References

  1. 1.
    A. Kan, H. Ogawa, A. Yokoi, H. Ohsato, J. Appl. Phys. 42, 6154 (2003)CrossRefGoogle Scholar
  2. 2.
    Y. Choi, J. Park, W. Ko, J. Park, S. Nahm, J. Park, J. Electroceram. 14, 157 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Kim, J. Kim, S. Yoon, K.S. Hong, C.K. Kim, J. Am. Ceram. Soc. 85, 2759 (2002)CrossRefGoogle Scholar
  4. 4.
    C. Huang, M. Weng, C. Lion, C. Wu, Mater. Res. Bull. 35, 2445 (2000)CrossRefGoogle Scholar
  5. 5.
    H.T. Kim, S.H. Kim, S. Nahm, J.D. Byun, J. Am. Ceram. Soc. 82, 3043 (1999)CrossRefGoogle Scholar
  6. 6.
    H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3476 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, Y. Higashida, J. Eur. Ceram. Soc. 25, 2871 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Bang, J. Eur. Ceram. Soc. 27, 3855 (2007)CrossRefGoogle Scholar
  9. 9.
    X G. Tang, J.Z. Liu, K. W. Kwok, H.L. W. Chan, J. Electroceram. 14, 119 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Kan, H. Ogawa, J. Alloys Comp. 364, 247 (2004)CrossRefGoogle Scholar
  11. 11.
    D. Andeen, L. Loeffler, N. Padture, F.F. Lange, J. Crystal Growth. 220, 191 (2000)CrossRefGoogle Scholar
  12. 12.
    B.W. Hakki, P.D. Coleman, IRE Trans. Microwave Theory Tech. 8, 402 (1960)CrossRefADSGoogle Scholar
  13. 13.
    J. Yang, S. Nahm, C. Choi, H. Lee, H. Park, J. Am. Ceram. Soc. 85, 165 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Kucheiko, J. Choi, H. Kim, H. Jung, J. Am. Ceram. Soc. 79, 2739 (1996)CrossRefGoogle Scholar
  15. 15.
    S.Y. Cho, C.K. Kim, D. Kim, K.S. Hong, J. Mater. Res. 14, 2484 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSoonchunhyang UniversityAsanSouth Korea

Personalised recommendations