Journal of Electroceramics

, Volume 21, Issue 1–4, pp 842–846 | Cite as

Synthesis, formation and characterization of lead indium niobate–lead titanate powders

  • S. Wongsaenmai
  • O. Khamman
  • S. Ananta
  • R. Yimnirun


In this study, powders of lead indium niobate–lead titanate (1 − x)Pb(In1/2Nb1/2)O3–(x)PbTiO3 (PINT) binary system near the morphotropic phase boundary (MPB) composition with x = 38 mol% PbTiO3 are synthesized with the conventional mixed oxide and the wolframite methods via a rapid vibro-milling technique for the first time. The preparation method and calcination temperature have been found to show pronounced effects on the phase formation behavior of the PINT powders. The stabilized perovskite phase form of PINT can be synthesized by the wolframite method, while precursor phases are still found in powders prepared by the conventional method. Finally, this study shows that the rapid vibro-milling mixing technique is effective in preparing the phase pure perovskite of PINT powders.


PIN–PT Conventional mixed oxide Wolframite method Vibro-milling technique 



The authors would like to express their gratitude for financial support from the Thailand Research Fund and Graduate School and Faculty of Science, Chiang Mai University, and Ministry of University Affairs of Thailand.


  1. 1.
    A.A. Bokov, I.P. Rayevskii, V.G. Smotrakov, O.I. Prokopalo, Phys. Status Solidi A Appl. Res. 93, 411–417 (1986)CrossRefGoogle Scholar
  2. 2.
    T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66(4), 704–711 (1987)Google Scholar
  3. 3.
    E.F. Alberta, A.S. Bhalla, Mater. Lett. 40, 114–117 (1999)CrossRefGoogle Scholar
  4. 4.
    E.F. Alberta, A.S. Bhalla, J. Phys. Chem. Solids 63, 1759–1769 (2002)CrossRefADSGoogle Scholar
  5. 5.
    C.A. Randall, D.J. Barber, P. Groves, R.W. Whatmore, J. Mater. Sci. 23, 3678–3682 (1988)CrossRefADSGoogle Scholar
  6. 6.
    N. Yasuda, T. Mizuno, Appl. Phys. Lett. 66(5), 571–573 (1995)CrossRefADSGoogle Scholar
  7. 7.
    E.F. Alberta, A.S. Bhalla, Mater. Lett. 29, 127–129 (1996)CrossRefGoogle Scholar
  8. 8.
    E.F. Alberta, A.S. Bhalla, Ferroelectrics 188, 96–107 (1996)Google Scholar
  9. 9.
    N. Yasuda, H. Ohwa, T. Mizunao, M. Iwata, Y. Ishibashi, Appl. Phys. Lett. 68(24), 3404–3406 (1996)CrossRefADSGoogle Scholar
  10. 10.
    M. Iwata, S. Katagiri, H. Orihara, M. Maeda, I. Zusuki, H. Ohwa, N. Yasuda, Y. Ishibashi, Ferroelectrics 301, 179–183 (2004)CrossRefGoogle Scholar
  11. 11.
    Y. Yoshikawa, J. Eur. Ceram. Soc. 21, 2041–2045 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Guo, H. Luo, T. He, Z. Yin, Solid State Commun. 123, 417–420 (2002)CrossRefADSGoogle Scholar
  13. 13.
    P. Groves, Ferroelectrics 65, 67–77 (1985)Google Scholar
  14. 14.
    E.F. Alberta, A.S. Bhalla, J. Korean Phys. Soc. 32, S1265–S1267 (1998)Google Scholar
  15. 15.
    N. Yasuda, H. Ohwa, D. Hasegawa, H. Hosono, Y. Yamashita, M. Iwata, Y. Ishibashi, Ferroelectrics 270, 247–252 (2002)CrossRefGoogle Scholar
  16. 16.
    N. Yasuda, H. Ohwa, M. Kume, Y. Yamashita, J. Appl. Phys. 39(2A), L66–L68 (2000)ADSGoogle Scholar
  17. 17.
    N. Yasuda, H. Ohwa, M. Kume, K. Hayashi, Y. Hosono, Y. Yamashita, J. Cryst. Growth 229, 299–304 (2001)CrossRefADSGoogle Scholar
  18. 18.
    R. Tipakontitikul, S. Ananta, Mater. Lett. 58(3), 449–454 (2004)CrossRefGoogle Scholar
  19. 19.
    N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Mater. Sci. Eng. B Solid-state Mater. Adv. Technol. 108, 258–265 (2004)Google Scholar
  20. 20.
    N. Yasuda, M. Fujie, Jpn. J. Appl. Phys. 31, 3128–3131 (1992)CrossRefADSGoogle Scholar
  21. 21.
    N. Yasuda, H. Ohwa, M. Kume, K. Hayashi, H. Hosono, Y. Yamashita, J. Cryst. Growth 229, 299–304 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Wongsaenmai
    • 1
  • O. Khamman
    • 1
  • S. Ananta
    • 1
  • R. Yimnirun
    • 1
  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations