Advertisement

Journal of Electroceramics

, Volume 21, Issue 1–4, pp 757–760 | Cite as

High dielectric constant in (1 − x)SrTiO3/xCuO composite ceramics

  • W. P. Qiu
  • X. Q. Liu
  • X. M. Chen
Article
  • 98 Downloads

Abstract

Semiconductive secondary phase CuO was introduced into SrTiO3 ceramic matrix to yield dielectric composite ceramics with high dielectric constant. The dense composite ceramics could be obtained by sintering at 1050°C in air for 3 h, in which the co-presence of SrTiO3 and CuO/Cu2O was confirmed. The dielectric constant of the present composite ceramics increased firstly and then decreased with increasing the content of CuO, and the highest dielectric constant was obtained at x = 0.4. There were steps and peaks on the curves of dielectric constant vs temperature and dielectric loss vs temperature, respectively, and the peak temperatures of dielectric loss indicated the Debye-type relaxation.

Keywords

(1 − x)SrTiO3/xCuO Composites Dielectric properties Microstructure 

Notes

Acknowledgement

The present work was supported by Chinese National Key Project for Fundamental Researches under grant No. 2002CB613302, National Science Foundation for Distinguished Young Scholars under grant No. 50025205, and National Science Foundation of Zhejiang Province under grand No. Y405152.

References

  1. 1.
    C.C. Homes, T.Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 275 (2002)Google Scholar
  2. 2.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D.Li, T. Vogt, S.M. Shaprio, Solid State Comm. 115, 217 (2000)CrossRefADSGoogle Scholar
  3. 3.
    L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)CrossRefADSGoogle Scholar
  4. 4.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefADSGoogle Scholar
  5. 5.
    S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)CrossRefADSGoogle Scholar
  6. 6.
    I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)CrossRefADSGoogle Scholar
  7. 7.
    J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)PubMedCrossRefADSGoogle Scholar
  8. 8.
    Y.H. Liu, J.F. Wang, L. Jiang, Y. Chen, C.W. Nan, Appl. Phys. Lett. 85, 5664 (2004)CrossRefADSGoogle Scholar
  9. 9.
    C. Pecharroman, F.E. Betegon, J.F. Bartolome, S.L. Esteban, J.S. Moya, Adv. Mater. 13, 1541 (2001)CrossRefGoogle Scholar
  10. 10.
    J.J. An, Practical Dictionary of Fine Chemical Engineering, 2nd Edition (China Light Industry Press, Beijing, 2000), p.851Google Scholar
  11. 11.
    S. Dasgupta, W.P. Conner, J. Appl. Phys. 46, 204 (1975)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations