Journal of Electroceramics

, Volume 21, Issue 1–4, pp 786–790 | Cite as

Synthesis, formation and characterization of lead zinc niobate–lead zirconate titanate powders via a rapid vibro-milling method

  • A. Ngamjarurojana
  • O. Khamman
  • S. Ananta
  • R. Yimnirun


In this study, an approach to synthesizing pyrochlore-free lead zinc niobate – lead zirconate titanate powders with a formula xPb(Zn1/3Nb2/3)O3–(1 − x)Pb(Zr1/2Ti1/2)O3 (when x = 0.1–0.5) by a mixed oxide synthetic route via a rapid vibro-milling has been developed. The formation of perovskite phase in calcined PZN-PZT powders has been investigated as a function of calcination temperature by TG-DTA and XRD techniques. Powder morphology and chemical composition have been determined with SEM and EDX techniques. The potential of a vibro-milling technique as a significant time-saving method to obtain single-phase PZN-PZT powders at low calcination temperature is also discussed. The results indicate that at calcination condition of 900 °C for 2 h, with heating/cooling rates of 20 °C/min single-phase PZN-PZT powders can be obtained for every composition ratio between x = 0.1–0.5.


Phase formation Calcination Vibro-milling Lead zinc niobate Lead zirconate titanate 



The authors are grateful to the Thailand Research Fund (TRF), Commission on Higher Education (CHE), The Royal Golden Jubilee Ph.D. program, Graduate School and Faculty of Science, Chiang Mai University, and Ministry of University Affairs of Thailand for financial support.


  1. 1.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics. (Academic Press, London, UK, 1971)Google Scholar
  2. 2.
    Y. Xu, Ferroelectric Materials and Their Applications. (Elsevier, Amsterdam, The Netherlands, 1991)Google Scholar
  3. 3.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 22, 863–867 (1979)Google Scholar
  5. 5.
    S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997)CrossRefADSGoogle Scholar
  6. 6.
    M. Dambekalne, I. Brante, A. Sternberg, Ferroelectrics 90, 1–14 (1989)Google Scholar
  7. 7.
    T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66, 704–711 (1987)Google Scholar
  8. 8.
    A. Halliyal, U. Kumar, R.E. Newnham, L.E. Cross, Am. Ceram. Soc. Bull. 66, 671–676 (1987)Google Scholar
  9. 9.
    T.R. Gururaja, A. Safari, A. Halliyal, Am. Ceram. Soc. Bull. 65, 1601–1603 (1986)Google Scholar
  10. 10.
    H. Fan, H.E. Kim, J. Appl. Phys. 91, 317–322 (2002)CrossRefADSGoogle Scholar
  11. 11.
    H. Fan, H.E. Kim, J. Mater. Res. 17, 180–185 (2002)CrossRefADSGoogle Scholar
  12. 12.
    N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, J. Mater. Res. 18, 2882–2889 (2003)CrossRefADSGoogle Scholar
  13. 13.
    S. Ananta, R. Brydson, N.W. Thomas, J. Eur. Ceram. Soc. 20, 2325–2329 (2000)CrossRefGoogle Scholar
  14. 14.
    T.Y. Tien, W.G. Carlson, J. Am. Ceram. Soc. 45, 567–571 (1962)CrossRefGoogle Scholar
  15. 15.
    C.G. Pillai, P.V. Ravindran, Thermochim. Acta 278, 109–118 (1996)CrossRefGoogle Scholar
  16. 16.
    N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, J. Mater. Sci. Eng. B 108, 258–265 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. Ngamjarurojana
    • 1
  • O. Khamman
    • 1
  • S. Ananta
    • 1
  • R. Yimnirun
    • 1
  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations