Journal of Electroceramics

, Volume 19, Issue 2–3, pp 195–206 | Cite as

Calculation of the electromagnetic field in a multimode microwave cavity for sintering planar-perovskite SOFC ceramics

  • K. Darcovich
  • J. Biton
  • J. Magnier


In the context of developing a full scope numerical simulation of microwave sintering, a more precise and fundamentally based method of calculating the electromagnetic field strengths was sought. The finite difference time domain (FDTD) method was adopted and implemented for this purpose. The temporal nature of the electromagnetic fields was studied to ensure stable algorithms for determining root mean square values for field strengths. Further, a method was outlined whereby the multimode nature of a cavity can be determined with quality parameters for the source frequency. A example calculation is given for lanthanum nickelate, a potential solid oxide fuel cell cathode material with a complex microwave response, arising from its significant dielectric and magnetic loss properties.


FDTD method Electromagnetic fields Multimode cavity SOFC materials 


  1. 1.
    D. Dadon, D.L. Martin, M. Rosen, A. Birman, D. Gershon, J.P. Calame, B. Levush, Y. Carmel, J. Mater. Synth. Process. 4(2), 95–103 (1996)Google Scholar
  2. 2.
    K.H. Brosnan, G.L. Messing , D.K. Agrawal, J. Am. Cer. Soc. 86(8), 1307-1312 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Rabenau, P. Eckerlin, Acta Cryst. 11, 304–306 (1958)CrossRefGoogle Scholar
  4. 4.
    A. Birnboim, Y. Carmel, J. Am. Ceram. Soc. 82(11), 3024–3030 (1999)CrossRefGoogle Scholar
  5. 5.
    R. Roy, R. Peelamedu, C. Grimes, J. Cheng, D. Agrawal, J. Mater. Res. 17(12), 3008–3011 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Darcovich, P.S. Whitfield, G. Amow, K. Shinagawa, R.Y. Miyahara, J. Eur. Ceram. Soc. 25(12), 2235–2240 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Birman, B. Levush, Y. Carmel, D. Gershon, D. Dadon, L.P. Martin, Ceram. Trans.59, 305–12 (1995)Google Scholar
  8. 8.
    K.S. Yee, IEEE Trans. Antennas Propag. AP-14(3), 302–307 (1966)Google Scholar
  9. 9.
    P.C. Cherry, M.F. Iskander, Microwave Theory Tech. 40(8), 1692–1700 (1992)CrossRefGoogle Scholar
  10. 10.
    M.F. Iskander, R.L. Smith, A.O.M. Andrade, H. Kimrey Jr., L.M. Walsh, IEEE Trans. Microwave Theor. Tech. 42(5), 793–800 (1994)CrossRefGoogle Scholar
  11. 11.
    M.J. White, M.F. Iskander, Z. Huang, IEEE Trans. Antennas Propag. 45(10), 1512–1517 (1997)CrossRefGoogle Scholar
  12. 12.
    D.D. Dinkov, K.A. Parrot, Computational analysis of microwave heating patterns in resonant multimode cavities. Proc. 2004 ACM Symp. Applied Computing, (Nicosia, Cyprus, Mar. 14-17, 2004), pp. 215–219Google Scholar
  13. 13.
    J. Tucker, M.F. Iskander, Z. Huang, Mat. Res. Soc. Symp. Proc. 347, 353–362 (1994)Google Scholar
  14. 14.
    M.J. White, M.F. Iskander, H.D. Kimrey, Mat. Res. Soc. Symp. Proc. 420, 325-331 (1996)Google Scholar
  15. 15.
    A.J. Baden Fuller, Microwaves, An Introduction to Microwave Theory and Techniques, 3rd edn. (Pergamon Press, Oxford, 1990)Google Scholar
  16. 16.
    A. Taflove, S.C. Hagness, Computational Electrodynamics, the Finite-difference Time-domain Method, 2nd edn. (Artech House, Boston, 2000)Google Scholar
  17. 17.
    J. Clemens, C. Saltiel, Int J. Heat Mass Transfer. 39, 1665–1675 (1996)CrossRefGoogle Scholar
  18. 18.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994)Google Scholar
  19. 19.
    V. Vegh, I.W. Turner, E. Sizgek, D. Sizgek, ANZIAM J. 45(E), C34-C49 (2004)Google Scholar
  20. 20.
    F. Torres, B. Jecko, IEEE Trans. Microwave Theor. Tech., 45(1), 108–117 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.National Research Council of CanadaInstitute for Chemical Process and Environmental TechnologyOttawaCanada
  2. 2.ICAM-NantesCarquefouFrance
  3. 3.École Nationale Supérieur de Céramique IndustrielleLimoges CedexFrance

Personalised recommendations