Journal of Electroceramics

, Volume 20, Issue 3–4, pp 271–276 | Cite as

Investigation of omnidirectional piezoelectric actuator

  • P. Vasiljev
  • S. Borodinas
  • L. Vasiljeva
  • D. Mazeika
  • Seok-Jin Yoon


A study of a novel design composite piezoelectric actuator for omnidirectional object positioning is given in the paper. The actuator consists of a vibrating disc with a small cylinder mounted at the centre and a piezoceramic disc. The cylinder magnifies resonant bending vibrations of the vibrating disc and transmits driving force to the slider. Electrodes of the piezoceramic disc cover all the surface of the bottom and are divided into four equal sectors. 2D motion and rotation of the slider is achieved depending on the excitation scheme of the electrodes. Numerical modeling based on the finite element method was performed to obtain resonance frequencies and modal shapes of the actuator and to calculate the trajectories of contact point’s movements under different excitation schemes of the electrodes. A prototype actuator was made and experimental outcomes of the oscillations of the working surfaces are given. Results of the numerical and experimental investigations are analyzed and discussed.


Piezoelectric actuator Omnidirectional Finite element method 


  1. 1.
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer, Norwell, MA, USA, 1997)Google Scholar
  2. 2.
    S. Ueha, Y. Tomikawa, M. Kurosawa, N. Nakamura, Ultrasonic Motors: Theory and Applications (Oxford University Press, USA, 1994)Google Scholar
  3. 3.
    G. Gautschi, Piezoelectric Sensorics (Springer, Berlin, Germany, 2002)Google Scholar
  4. 4.
    T. Hemsel, J. Wallaschek, Survey of the present state of the art of piezoelectric linear motors, Ultrasonics 38, 37–40 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Aoyagi, S.P. Beeby, N.M. White, A novel multi-degree-of-freedom thick-film ultrasonic motor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 151–158 (2002)CrossRefGoogle Scholar
  6. 6.
    Y.Gouda, K.Nakamura, S.Ueha, A miniaturization of the multi-degree-of-freedom ultrasonic actuator using a small cylinder fixed on a substrate. Proceedings of the 2nd International Workshop on Piezoelectric Materials and Applications in Actuators (Paderborn, Germany, 2005), pp. 263–267Google Scholar
  7. 7.
    T. Takano, Y. Tomikawa, M. Aoyagi, S. Hirose, Powder-supply device using bending mode disk vibrator with cylindrical funnel at its center, Proceedings of IEEE International Ultrasonic Symposium (Munich, Germany, 2002), pp. 657–660Google Scholar
  8. 8.
    H. Allik, T.J. Hughes, Finite element method for piezoelectric vibration, Int J Numer Methods Eng 2, 151–157 (1970)CrossRefGoogle Scholar
  9. 9.
    P.A. Juang, D.W. Gu, Finite element simulation for a new disc-type ultrasonic stator, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4), 368–375 (2003)CrossRefGoogle Scholar
  10. 10.
    H.S. Tzou, Piezoelectric Shells Distributed Sensing and Control of Continua (Kluwer, Dordrecht, 1993) p. 320Google Scholar
  11. 11.
    P. Vasiljev, S. Borodinas, S.-J. Yoon, D. Mazeika, G. Kulvietis, The actuator for micro moving of a body in a plane, Mater. Chem. Phys. 91(1), 237–242 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P. Vasiljev
    • 1
  • S. Borodinas
    • 1
  • L. Vasiljeva
    • 1
  • D. Mazeika
    • 2
  • Seok-Jin Yoon
    • 3
  1. 1.Department of Technical SubjectsVilnius Pedagogical UniversityVilniusLithuania
  2. 2.Department of Information TechnologyVilnius Gediminas Technical UniversityVilniusLithuania
  3. 3.Korea Institute of Science and TechnologySeoulSouth Korea

Personalised recommendations