Advertisement

Journal of Electroceramics

, Volume 20, Issue 1, pp 53–58 | Cite as

Direct and converse magnetoelectric effect at resonant frequency in laminar piezoelectric-magnetostrictive composite

  • C. Popov
  • H. Chang
  • P. M. Record
  • E. Abraham
  • R. W. Whatmore
  • Z. Huang
Article

Abstract

Laminar piezoelectric-magnetostrictive composites using piezoelectric lead zirconate titanate ceramics and the giant magnetostrictive rare-earth-iron alloy Terfenol-D were prepared by epoxy bonding. The direct and converse magnetoelectric (ME) effects at and off the mechanical resonant frequency were characterized and compared to the theoretical modelling. The mechanical resonant frequency of the composites depended on the sample orientation and the magnetic DC bias field. In the longitudinal configuration, the resonant frequency shifted down monotonically with the increasing bias field. When the sample was in the transverse configuration, the resonant frequency decreased with the increasing field at first. However, at higher bias, it shifted up with the increasing bias. A phenomenological model based on the ΔE effect of magnetostrictive materials is proposed to explain the observed phenomena.

Keywords

Magnetoelectric effect Piezoelectric Magnetostrictive PZT ΔE effect Orientation dependence 

Notes

Acknowledgement

This work was financially supported by the UK EPSRC Grants GR/R92448, EP/D506638/1 and EP/C519426/1.

References

  1. 1.
    G.A. Prinz, Science 282, 1660–1663 (1998)CrossRefGoogle Scholar
  2. 2.
    M. Fiebig, J. Phys., D. Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  3. 3.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Diett, Y. Ohno, K. Ohtani, Nature 408, 944–946 (2000)CrossRefGoogle Scholar
  4. 4.
    T. Lottermoser, T. Lonkal, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Nature 430, 541–544 (2004)CrossRefGoogle Scholar
  5. 5.
    A.A. Semenov, S.F. Karmanenko, V.E. Demidov, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Appl. Phys. Lett. 88, 033503 (2006)CrossRefGoogle Scholar
  6. 6.
    Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Jia, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Appl. Phys. Lett. 88, 242902 (2006)CrossRefGoogle Scholar
  8. 8.
    L.D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960; Translation of Russian Edition, 1958)Google Scholar
  9. 9.
    D.N. Astrov, Zh. Exp. Teor. Fiz. 37, 881 (1959) (Soviet Phys.-JETP, 10, 628 [1960])Google Scholar
  10. 10.
    V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rew. Lett. 6, 607 (1961)CrossRefGoogle Scholar
  11. 11.
    G.T. Rado, J.M. Ferrari, W.G. Maisch, Phys. Rew. B29, 4041 (1984)CrossRefGoogle Scholar
  12. 12.
    K. Agyei, J.L. Birman, J. Phys.: Condens. Matter. 2, 3007 (1990)CrossRefGoogle Scholar
  13. 13.
    J. van Suchtelen, Philips Res. Rep. 27, 28 (1972)Google Scholar
  14. 14.
    J. van den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974)CrossRefGoogle Scholar
  15. 15.
    A.M.J.G. van Run, D.R. Terrell, J.H. Scholing, J. Mater. Sci. 9, 1710 (1974)CrossRefGoogle Scholar
  16. 16.
    C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Liu, J. Appl. Phys. 94(9), 5930 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Liu, S. Fu, C. Huang, Mater. Sci. Eng. B121, 255 (2005)CrossRefGoogle Scholar
  18. 18.
    G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Yu.I. Bokhan, V.M. Laletin, Phys. Rev. B64, 214408 (2001)Google Scholar
  19. 19.
    J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys., Part 1, 40, 4948 (2001)CrossRefGoogle Scholar
  20. 20.
    U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, Appl. Phys. A78, 33 (2004)Google Scholar
  21. 21.
    S. Dong, J. Li, D. Viehland, App. Phys. Lett. 83, 11 (2003)Google Scholar
  22. 22.
    S. Dong, J. Li, D. Viehland, App. Phys. Lett. 86, 182506 (2005)CrossRefGoogle Scholar
  23. 23.
    P.M. Record, C. Popov, E. Abraham, J. Fletcher, H. Chang, Z. Huang, R.W. Whatmore, Sensor. Actuator. A-Phys. (2007)Google Scholar
  24. 24.
    S. Schmidt, C.A. Grimes, IEEE Trans. Mag. 37, 2731–2733 (2001)CrossRefGoogle Scholar
  25. 25.
    M.I. Bichurin, V.M. Petrov, Phys. Rew. B 68, 054402 (2003)CrossRefGoogle Scholar
  26. 26.
    Z. Huang, J. Appl. Phys 100, 114104 (2006)CrossRefGoogle Scholar
  27. 27.
    P.T. Squire, J. Magn. Magn. Mat. 87, 299–310 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. Popov
    • 2
  • H. Chang
    • 1
  • P. M. Record
    • 2
  • E. Abraham
    • 2
  • R. W. Whatmore
    • 1
    • 3
  • Z. Huang
    • 1
  1. 1.Department of Materials, School of Applied SciencesCranfield UniversityBedsUK
  2. 2.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  3. 3.Tyndall National InstituteCorkIreland

Personalised recommendations