Skip to main content
Log in

Direct and converse magnetoelectric effect at resonant frequency in laminar piezoelectric-magnetostrictive composite

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Laminar piezoelectric-magnetostrictive composites using piezoelectric lead zirconate titanate ceramics and the giant magnetostrictive rare-earth-iron alloy Terfenol-D were prepared by epoxy bonding. The direct and converse magnetoelectric (ME) effects at and off the mechanical resonant frequency were characterized and compared to the theoretical modelling. The mechanical resonant frequency of the composites depended on the sample orientation and the magnetic DC bias field. In the longitudinal configuration, the resonant frequency shifted down monotonically with the increasing bias field. When the sample was in the transverse configuration, the resonant frequency decreased with the increasing field at first. However, at higher bias, it shifted up with the increasing bias. A phenomenological model based on the ΔE effect of magnetostrictive materials is proposed to explain the observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.A. Prinz, Science 282, 1660–1663 (1998)

    Article  CAS  Google Scholar 

  2. M. Fiebig, J. Phys., D. Appl. Phys. 38, R123–R152 (2005)

    Article  CAS  Google Scholar 

  3. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Diett, Y. Ohno, K. Ohtani, Nature 408, 944–946 (2000)

    Article  CAS  Google Scholar 

  4. T. Lottermoser, T. Lonkal, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Nature 430, 541–544 (2004)

    Article  CAS  Google Scholar 

  5. A.A. Semenov, S.F. Karmanenko, V.E. Demidov, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Appl. Phys. Lett. 88, 033503 (2006)

    Article  CAS  Google Scholar 

  6. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006)

    Article  CAS  Google Scholar 

  7. Y. Jia, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Appl. Phys. Lett. 88, 242902 (2006)

    Article  CAS  Google Scholar 

  8. L.D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960; Translation of Russian Edition, 1958)

    Google Scholar 

  9. D.N. Astrov, Zh. Exp. Teor. Fiz. 37, 881 (1959) (Soviet Phys.-JETP, 10, 628 [1960])

  10. V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rew. Lett. 6, 607 (1961)

    Article  CAS  Google Scholar 

  11. G.T. Rado, J.M. Ferrari, W.G. Maisch, Phys. Rew. B29, 4041 (1984)

    Article  Google Scholar 

  12. K. Agyei, J.L. Birman, J. Phys.: Condens. Matter. 2, 3007 (1990)

    Article  Google Scholar 

  13. J. van Suchtelen, Philips Res. Rep. 27, 28 (1972)

    Google Scholar 

  14. J. van den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974)

    Article  Google Scholar 

  15. A.M.J.G. van Run, D.R. Terrell, J.H. Scholing, J. Mater. Sci. 9, 1710 (1974)

    Article  Google Scholar 

  16. C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Liu, J. Appl. Phys. 94(9), 5930 (2003)

    Article  CAS  Google Scholar 

  17. X. Liu, S. Fu, C. Huang, Mater. Sci. Eng. B121, 255 (2005)

    Article  CAS  Google Scholar 

  18. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Yu.I. Bokhan, V.M. Laletin, Phys. Rev. B64, 214408 (2001)

    Google Scholar 

  19. J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys., Part 1, 40, 4948 (2001)

    Article  CAS  Google Scholar 

  20. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, Appl. Phys. A78, 33 (2004)

    Google Scholar 

  21. S. Dong, J. Li, D. Viehland, App. Phys. Lett. 83, 11 (2003)

    Google Scholar 

  22. S. Dong, J. Li, D. Viehland, App. Phys. Lett. 86, 182506 (2005)

    Article  CAS  Google Scholar 

  23. P.M. Record, C. Popov, E. Abraham, J. Fletcher, H. Chang, Z. Huang, R.W. Whatmore, Sensor. Actuator. A-Phys. (2007)

  24. S. Schmidt, C.A. Grimes, IEEE Trans. Mag. 37, 2731–2733 (2001)

    Article  Google Scholar 

  25. M.I. Bichurin, V.M. Petrov, Phys. Rew. B 68, 054402 (2003)

    Article  CAS  Google Scholar 

  26. Z. Huang, J. Appl. Phys 100, 114104 (2006)

    Article  CAS  Google Scholar 

  27. P.T. Squire, J. Magn. Magn. Mat. 87, 299–310 (1990)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the UK EPSRC Grants GR/R92448, EP/D506638/1 and EP/C519426/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, C., Chang, H., Record, P.M. et al. Direct and converse magnetoelectric effect at resonant frequency in laminar piezoelectric-magnetostrictive composite. J Electroceram 20, 53–58 (2008). https://doi.org/10.1007/s10832-007-9184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9184-5

Keywords

Navigation