Advertisement

Journal of Electroceramics

, Volume 18, Issue 3–4, pp 305–309 | Cite as

Structural and dielectric properties of epitaxial Ba0.6Sr0.4TiO3 thin films grown on Si substrates with thin SrO buffer layers

  • Hyun-Suk Kim
  • Tae-Seon Hyun
  • Ho-Gi Kim
  • Tae-Soon Yun
  • Jong-Chul Lee
  • Il-Doo Kim
Article

Abstract

(100) epitaxial Ba0.6Sr0.4TiO3 (BST) thin films were grown on Si substrates using a 9 nm thick SrO buffer layer. The phase shifter fabricated on BST films grown on a SrO buffered Si substrate showed a larger figure of merit (FOM) of 24.7°/dB as a result of improving the phase tuning while retaining an appropriate insertion loss compared to that (15.3°/dB) for the BST/MgO structure. This work demonstrates that a thin SrO buffer layer plays an important role in the successful integration of BST-based microwave tunable devices onto Si wafers.

Keywords

SrO BST Phase shifter Si integration Buffer layer 

Notes

Acknowledgement

This work was supported by KIST independent project of one of the authors (I.D.K.)

References

  1. 1.
    I.D. Kim, H.L. Tuller, H.S. Kim, J.S. Park, Appl. Phys. Lett. 85, 4705 (2004)CrossRefGoogle Scholar
  2. 2.
    C.L. Chen, H.H. Feng, Z. Zhang, A. Brazdeikis, Z.J. Huang, W.K. Chu et al., Appl. Phys. Lett. 75, 412 (1999)CrossRefGoogle Scholar
  3. 3.
    W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore et al., Appl. Phys. Lett. 74, 1033 (1999)CrossRefGoogle Scholar
  4. 4.
    M.W. Cole, P.C. Joshi, M. Ervin, M. Wood, R. L. Pfeffer, J. Appl. Phys. 92, 3967 (2002)CrossRefGoogle Scholar
  5. 5.
    M.W. Cole, W.D. Nothwang, J.D. Demaree, S Hirsch, J. Appl. Phys. 98, 024507 (2005)CrossRefGoogle Scholar
  6. 6.
    H.S. Kim, H.G. Kim, I.D. Kim, K.B. Kim, J.C. Lee, Appl. Phys. Lett. 87, 212903 (2005)CrossRefGoogle Scholar
  7. 7.
    S.Y. Hou, J. Kwo, R.K. Watts, J.Y. Cheng, D.K. Fork, Appl. Phys. Lett. 67, 1387 (1995)CrossRefGoogle Scholar
  8. 8.
    B.S. Kang, J.S. Lee, L. Stan, J.K. Lee, R.F. DePaula, P.N. Arendt et al., Appl. Phys. Lett. 85, 4702 (2004)CrossRefGoogle Scholar
  9. 9.
    C.L. Canedy, S. Aggarwal, H. Li, T. Venkatesan, R. Ramesh, F.W. Van Keuls et al., Appl. Phys. Lett. 77, 1523 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Vorobievm, P. Rundqvist, K. Khamchance, S. Gevorgian, J. Euro. Ceram. Soc. 23, 2711 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Higuchi, Y. Chen, J. Koike, S. Iwashita, M. Ishida, T. Shimoda, Jpn. J. Appl. Phys. 41, 6867 (2002)CrossRefGoogle Scholar
  12. 12.
    O. Nakagawa, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata, T. Kawai, J. Appl. Phys. 78, 7226 (1995)CrossRefGoogle Scholar
  13. 13.
    H.S. Kim, T.S. Hyun, H.G. Kim, I.D. Kim, T.S. Yoon, J.C. Lee, Appl. Phys. Lett. 89, 052902 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hyun-Suk Kim
    • 1
  • Tae-Seon Hyun
    • 2
  • Ho-Gi Kim
    • 2
  • Tae-Soon Yun
    • 3
  • Jong-Chul Lee
    • 3
  • Il-Doo Kim
    • 4
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  3. 3.RFIC Research and Education CenterKwangwoon UniversitySeoulRepublic of Korea
  4. 4.Optoelectronic Materials Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations