Journal of Electroceramics

, Volume 21, Issue 1–4, pp 189–192 | Cite as

Low-temperature synthesis of barium titanate thin films by nanoparticles electrophoretic deposition

  • Yong Jun Wu
  • Juan Li
  • Tomomi Koga
  • Makoto Kuwabara


The nanoparticles electrophoretic deposition (EPD) of barium titanate (BaTiO3 or BTO) thin films was investigated. BTO nanocrystallites in a pseudocubic perovskite phase with an average particle size of about 10 nm were synthesized at a low temperature of 90°C by a high-concentration sol–gel process. By using a mixed solvent of 2-methoxyethanol and acetylacetone as dispersing medium, transparent and well-dispersed BTO nanocrystallites suspensions within the concentration range of 0.0125 to 0.20 mol/l was successfully prepared for nanoparticles EPD. A uniform microstructure and a smooth surface were observed on the deposited films. The film thickness of the deposited films increased rapidly with increasing EPD time in the initial period of EPD, and thereafter gradually increased to a limited thickness. With increasing applied EPD voltage, the limited film thickness increased. A near linear relation between the film thickness of films and the concentration of suspensions was observed under the same EPD conditions. The microstructures of the deposited BTO thin films were investigated.


Barium titanate Electrophoretic deposition Thin film Sol–gel process Nanocrystallite 



This work is partially supported by a Grant-in-Aid (no. 16206065) from the Japan Society for the Promotion of Science (JSPS). Y. J. Wu is grateful to the JSPS for a fellowship.


  1. 1.
    Y. Yamashita, H. Yamamoto, Y. Sakabe, Jpn. J. Appl. Phys. 43, 6521 (2004)CrossRefADSGoogle Scholar
  2. 2.
    K. Tanaka, K. Susuki, D. Fu, K. Nishizawa, T. Miki, K. Kato, Jpn. J. Appl. Phys. 43, 6525 (1999)CrossRefADSGoogle Scholar
  3. 3.
    M.E. Marssi, F.L. Marrec, I.A. Lukyanchuk, M.G. Karkut, J. Appl. Phys. 94, 3307 (2003)CrossRefADSGoogle Scholar
  4. 4.
    H. Basantaka Sharma, H.N.K. Sarma, A. Maningh, J. Mater. Sci. 34, 1385–1390 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Kozuka, A. Higuchi, J. Mater. Res. 16, 3116 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Y. Sakabe, Y. Takeshima, K. Tanaka, J. Electroceram. 3, 115–121 (1999)CrossRefGoogle Scholar
  7. 7.
    M.A. Mccormick, E.B. Slamovich, J. Eur. Ceram. Soc. 23, 2143 (2003)CrossRefGoogle Scholar
  8. 8.
    C.L. Jia, M. Siegert, K. Urban, Acta Mater. 49, 2783 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc. 79, 1987 (1996)CrossRefGoogle Scholar
  10. 10.
    A.R. Boccaccini, U. Schindler, H.-G. Kruger, Mater. Lett. 51, 225 (2001)CrossRefGoogle Scholar
  11. 11.
    Y.C. Wang, I.C. Leu, M.H. Hon, J. Am. Ceram. Soc. 87, 84 (2004)CrossRefGoogle Scholar
  12. 12.
    B. Ferrari, A.J. Sanchez-Herencia, R. Moreno, Mater. Lett. 35, 370 (1998)CrossRefGoogle Scholar
  13. 13.
    P. Sarkar, X. Huang, P.S. Nicholson, J. Am. Ceram. Soc. 76, 1055 (1993)CrossRefGoogle Scholar
  14. 14.
    S. Okamura, T. Tsukamoto, N. Koura, Jpn. J. Appl. Phys. 32, 4182 (1993)CrossRefADSGoogle Scholar
  15. 15.
    R. Louh, Y. Hsu, Mater. Chem. Phys. 79, 226–269 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Nagai, K. Yamashita, T. Umegaki, Y. Takuma, J. Am. Ceram. Soc. 76, 253 (1993)CrossRefGoogle Scholar
  17. 17.
    J. Li, Y.J. Wu, H. Tanaka, T. Yamamoto, M. Kuwabara, J. Am. Ceram. Soc. 87, 1578 (2004)CrossRefGoogle Scholar
  18. 18.
    H. Shimooka, M. Kuwabara, J. Am. Ceram. Soc. 79, 2983 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yong Jun Wu
    • 1
  • Juan Li
    • 2
  • Tomomi Koga
    • 3
  • Makoto Kuwabara
    • 3
  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.College of Chemical Engineering and Materials ScienceZhejiang University of TechnologyHangzhouChina
  3. 3.Department of Applied Science for Electronics and MaterialsKyushu UniversityKasugaJapan

Personalised recommendations