Journal of Electroceramics

, Volume 21, Issue 1–4, pp 198–201 | Cite as

Size dependence of THz region dielectric properties for barium titanate fine particles

  • Satoshi Wada
  • Hiroaki Yasuno
  • Takuya Hoshina
  • Hirofumi Kakemoto
  • Yoshikazu Kameshima
  • Takaaki Tsurumi


Barium titanate (BaTiO3) crystallites with various particle sizes from 22 to 500 nm were prepared by the two-step thermal decomposition method of barium titanyl oxalate. Various characterizations revealed that these particles were impurity-free, defect-free, dense BaTiO3 particles. The powder dielectric measurement clarified that the dielectric constant of BaTiO3 particles with a size of around 58 nm exhibited a maximum of over 15,000. To explain this size dependence, the THz region dielectric properties of BaTiO3 fine particles, especially Slater mode frequency, were measured using the far infrared (FIR) reflection method. As the result, the lowest Slater mode frequency was obtained at 58 nm. This tendency was completely consistent with particle size dependence of the dielectric constant.


THz region dielectric property Barium titanate Fine particle Infrared reflection 



We would like to thank Mr. M. Nishido of Fuji Titanium Co., Ltd. for preparing high purity BaTiO(C2O4)2·4H2O. This study was partially supported by (1) a Grant-in-Aid for Scientific Research (15360341) from the Ministry of Education, Science, Sports and Culture, Japan and (2) the Ookura Kazuchika Memorial foundation.


  1. 1.
    K. Kinoshita, A. Yamaji, J. Appl. Phys. 45, 371 (1976)CrossRefADSGoogle Scholar
  2. 2.
    G. Arlt, D. Hennings, G. De With, J. Appl. Phys. 58, 1619 (1985)CrossRefADSGoogle Scholar
  3. 3.
    K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37, 5852 (1988)CrossRefADSGoogle Scholar
  4. 4.
    K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989)CrossRefGoogle Scholar
  5. 5.
    M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996)CrossRefADSGoogle Scholar
  6. 6.
    S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn. 104, 383 (1996)Google Scholar
  7. 7.
    D. McCauley, R.E. Newnham, C.A. Randall, J. Am. Ceram. Soc. 81, 979 (1998)CrossRefGoogle Scholar
  8. 8.
    M.H. Frey, Z. Xu, P. Han, D.A. Payne, Ferroelectrics 206–207, 337 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Wada, H. Yasuno, T. Hoshina, S.-M. Nam, H. Kakemoto, T. Tsurumi, Jpn. J. Appl. Phys. 42, 6188 (2003)CrossRefADSGoogle Scholar
  10. 10.
    S. Wada, H. Yasuno, T. Hoshina, H. Kakemoto, Y. Kameshima, T. Tsurumi, T. Shimada, J. Eur. Ceram. Soc. (2005) in pressGoogle Scholar
  11. 11.
    T. Kajita, M. Nishido, in Extended Abstracts of the Ninth US–Japan Seminar on Dielectric Piezoelectric Ceramics 425 (1999)Google Scholar
  12. 12.
    S. Wada, M. Narahara, T. Hoshina, H. Kakemoto, T. Tsurumi, J. Mater. Sci. 38, 2655 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Wada, T. Hoshina, H. Yasuno, S.-M. Nam, H. Kakemoto, T. Tsurumi, Key Eng. Mater. 248, 19 (2003)CrossRefGoogle Scholar
  14. 14.
    S. Aoyagi, Y. Kuroiwa, A. Sawada, I. Yamashita, T. Atake, J. Phys. Soc. Jpn. 71, 1218 (2002)CrossRefADSGoogle Scholar
  15. 15.
    T. Hoshina, H. Yasuno, S.-M. Nam, H. Kakemoto, T. Tsurumi, S. Wada, Trans. Mater. Res. Soc. Jpn. 29, 1207 (2004)Google Scholar
  16. 16.
    T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics, vol. 1 (Gordon and Breach Science, New York, 1966)Google Scholar
  17. 17.
    J.M. Ballantyne, Phys. Rev. A 136, 429 (1964)CrossRefADSGoogle Scholar
  18. 18.
    A.S. Barker Jr., Phys. Rev. 145, 391 (1966)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Satoshi Wada
    • 1
  • Hiroaki Yasuno
    • 1
  • Takuya Hoshina
    • 1
  • Hirofumi Kakemoto
    • 1
  • Yoshikazu Kameshima
    • 1
  • Takaaki Tsurumi
    • 1
  1. 1.Department of Metallurgy and Ceramics ScienceTokyo Institute of TechnologyTokyoJapan

Personalised recommendations