Advertisement

Journal of Electroceramics

, Volume 21, Issue 1–4, pp 49–54 | Cite as

Ferroelectric distortion and electronic structure in Bi4Ti3O12

  • Yuji Noguchi
  • Takashi Goto
  • Masaru Miyayama
  • Akinori Hoshikawa
  • Takashi Kamiyama
Article

Abstract

The ferroelectric phase transition in Bi4Ti3O12 has been investigated through Rietveld analysis of high-resolution neutron powder diffraction and electronic structure calculations. The structural and electronic analyses show that the traditional model based on the stereoactive lone-pair 6s electrons of Bi3+ is not sufficient to explain the structural distortions in the ferroelectric state. It is strongly suggested that the hybridization of the Bi 6p and the O 2p in the perovskite layers is the trigger of the ferroelectric transition in Bi4Ti3O12, and that this orbital interaction is responsible for stabilizing the ferroelectric displacements in the perovskite layers.

Keywords

Ferroelectric phase transition Rietveld analysis Perovskite layers 

References

  1. 1.
    S.Y. Wu, W.J. Takei, M.H. Francombe, Ferroelectrics 10, 209 (1976)CrossRefGoogle Scholar
  2. 2.
    Bengt Aurivillius, ARKIV FUER KEMI 1, 499 (1949)Google Scholar
  3. 3.
    E.C. Subbarao, Phys. Rev. 122, 804 (1961)CrossRefADSGoogle Scholar
  4. 4.
    S.E. Cummins, L.E. Cross, J. Appl. Phys. 39, 2268 (1968)CrossRefADSGoogle Scholar
  5. 5.
    H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90, 4089 (2001)CrossRefADSGoogle Scholar
  6. 6.
    P.C. Joshi, A. Mansingh, M.N. Kamalasanan, S. Chandra, Appl. Phys. Lett. 59, 2389 (1991)CrossRefADSGoogle Scholar
  7. 7.
    W. Jo, G.C. Yi, T.W. Noh, D.K. Ko, Y.S. Cho, S.I. Kwun, Appl. Phys. Lett. 61, 1516 (1992)CrossRefADSGoogle Scholar
  8. 8.
    A.D. Rae, J.G. Thompson, R.L. Withers, A.C. Willis, Acta Crystallogr. B 46, 474 (1990)CrossRefGoogle Scholar
  9. 9.
    J.F. Dorrian, R.E. Newnham, M.I. Kay, D.K. Smith, Ferroelectrics 3, 17 (1971)Google Scholar
  10. 10.
    T. Takenaka, K. Sakata, Ferroelectrics 38, 769 (1981)Google Scholar
  11. 11.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefADSGoogle Scholar
  12. 12.
    T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K. Saito, M. Osada, Appl. Phys. Lett. 80, 2746 (2002)CrossRefADSGoogle Scholar
  13. 13.
    H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, T. Kojima, H. Funakubo, Appl. Phys. Lett. 81, 2229 (2002)CrossRefADSGoogle Scholar
  14. 14.
    H. Matsuda, S. Ito, T. Iijima, Appl. Phys. Lett. 83, 5023 (2003)CrossRefADSGoogle Scholar
  15. 15.
    M. Soga, Y. Noguchi, M. Miyayama, H. Okino, T. Yamamoto, Appl. Phys. Lett. 84, 100 (2004)CrossRefADSGoogle Scholar
  16. 16.
    R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971)CrossRefGoogle Scholar
  17. 17.
    R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid State Chem. 94, 404 (1991)CrossRefADSGoogle Scholar
  18. 18.
    B. Frit, J.P. Mercurio, J. Alloys Compd. 188, 27 (1992)CrossRefGoogle Scholar
  19. 19.
    L. Nistor, G. Vantendeloo, S. Amelinckx, Phase Transit. 59, 135 (1996)CrossRefGoogle Scholar
  20. 20.
    C.H. Hervoches, P. Lightfoot, Chem. Mater. 11, 3359 (1999)CrossRefGoogle Scholar
  21. 21.
    Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Q.D. Zhou, B.J. Kennedy, C.J. Howard, Chem. Mater. 15, 5025 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Jpn. J. Appl. Phys. 39, L1259 (2000)CrossRefADSGoogle Scholar
  24. 24.
    Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001)CrossRefADSGoogle Scholar
  25. 25.
    T. Kamiyama, K. Oikawa, F. Izumi, M. Kosaka, H. Onodera, Y. Yamaguchi, M. Kasaya, K. Kojima, Physica, B 241, 376 (1997)CrossRefADSGoogle Scholar
  26. 26.
    T. Ohta, F. Izumi, K. Oikawa, T. Kamiyama, Physica, B 234, 1093 (1997)CrossRefADSGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)PubMedCrossRefADSGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)CrossRefADSGoogle Scholar
  29. 29.
    P.E. Bloechl, Phys. Rev. B 50, 17953 (1994)CrossRefADSGoogle Scholar
  30. 30.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)CrossRefADSGoogle Scholar
  31. 31.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169–11186 (1996)CrossRefADSGoogle Scholar
  32. 32.
    W. Zhong, R.D. Kingsmith, D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994)PubMedCrossRefADSGoogle Scholar
  33. 33.
    T. Higuchi, M. Tanaka, K. Kudoh, T. Takeuchi, Y. Harada, S. Shin, T. Tsukamoto, Jpn. J. Appl. Phys. 40, 5803 (2001)CrossRefADSGoogle Scholar
  34. 34.
    T. Higuchi, K. Kudoh, T. Takeuchi, Y. Masuda, Y. Harada, S. Shin, T. Tsukamoto, Jpn. J. Appl. Phys. 41, 7195 (2002)CrossRefADSGoogle Scholar
  35. 35.
    T. Higuchi, Y. Moriuchi, Y. Noguchi, M. Miyayama, S. Shin, T. Tsukamoto, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 42, 6226 (2003)Google Scholar
  36. 36.
    J.G. Thompson, A.D. Rae, R.L. Withers, D.C. Craig, Acta Crystallogr., B Struct. Sci. 47, 174 (1991)CrossRefGoogle Scholar
  37. 37.
    I.D. Brown, D. Altermatt, Acta Crystallogr., B Struct. Sci. 41, 244 (1985)CrossRefGoogle Scholar
  38. 38.
    M. Okeeffe, Struct. Bond. 71, 161 (1989)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yuji Noguchi
    • 1
    • 2
  • Takashi Goto
    • 1
  • Masaru Miyayama
    • 1
  • Akinori Hoshikawa
    • 3
  • Takashi Kamiyama
    • 3
  1. 1.RCASTThe University of TokyoTokyoJapan
  2. 2.PRESTOJapan Science and Technology AgencyKawaguchiJapan
  3. 3.Neutron Science Laboratory, Institute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationIbarakiJapan

Personalised recommendations