Journal of Electroceramics

, Volume 21, Issue 1–4, pp 67–71 | Cite as

Fabrication and characterization of micropatterned barium titanate ceramics



A new patterning method combining electron beam (EB) lithography and electrophoretic deposition (EPD) for fabricating micropatterned barium titanate (BaTiO3) thin films was investigated. At first, resist molds with high resolution were prepared using EB lithography on Pt/Ti/Si substrates. Then BaTiO3 nanoparticles were deposited on the substrates by EPD from a transparent suspension of monodispersed BaTiO3 nanoparticles; a mixed solvent of 2-methoxyethonal and acetylacetone with a 9:1 volumetric ratio was used as a dispersion medium. The nanoparticles with an average size of about 10 nm were synthesized at a low temperature of 90 °C by a high concentration sol-gel process. EPD layers superfluously deposited on the resist molds were mechanically polished away, followed by chemically removing the molds in a resist remover to leave micropatterns of BaTiO3 nanoparticles on the substrates, which were finally sintered to yield micropatterned BaTiO3 ceramic thin films. The method developed may be used to fabricate other micropatterned electroceramic thin films.


Barium titanate Micropatterning Thin film Electron beam lithography Electrophoretic deposition Sol-gel process 



This work is partially supported by a Grant-in-Aid (no. 16206065) from the Japan Society for the Promotion of Science (JSPS). Y. J. Wu is grateful to the JSPS for a Fellowship.


  1. 1.
    S. Ramesh, B.A. Shutzberg, C. Huang, J. Gao, E.P. Giannelis, IEEE Trans. Adv. Packaging 26, 17 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Alexe, C. Harnagea, D. Hesse, J. Electroceramics 12, 69 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Baborowski, J. Electroceramics 12, 33 (2004)CrossRefGoogle Scholar
  4. 4.
    K. Nagayama, T. Yahagi, H. Nakada, T. Tohma, T. Watanabe, K. Yoshida, S. Miyaguchi, Jpn. J. Appl. Phys. 36, L1555 (1997)CrossRefADSGoogle Scholar
  5. 5.
    T. Aoki, M. Kuwabara, M. Kondo, M. Tsukada, K. Kurihara, N. Kamehara, Appl. Phys. Lett. 85, 2580 (2004)CrossRefADSGoogle Scholar
  6. 6.
    N.P. Padture, A. Wei, J. Am. Ceram. Soc. 86, 2215 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Okamura, T. Maekawa, K. Susuki, T. Shiosaki, Jpn. J. Appl. Phys. 41, 6754 (2002)CrossRefADSGoogle Scholar
  8. 8.
    C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngaillis, E. Williams, R. Ramesh, Appl. Phys. Lett. 75, 409 (1999)CrossRefADSGoogle Scholar
  9. 9.
    M. Alexe, C. Harnagea, D. Hesse, U. Gosele, Appl. Phys. Lett. 75, 1793 (1999)CrossRefADSGoogle Scholar
  10. 10.
    I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, M. Alexe, U. Gosele, Appl. Phys. Lett. 83, 2211 (2003)CrossRefADSGoogle Scholar
  11. 11.
    N. Saito, H, Haneda, T. Sekiguchi, N, Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14, 418 (2002)CrossRefGoogle Scholar
  12. 12.
    P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc. 79, 1987 (1996)CrossRefGoogle Scholar
  13. 13.
    H. Shimooka, M. Kuwabara, J. Am. Ceram. Soc. 79, 2983 (1996)CrossRefGoogle Scholar
  14. 14.
    J. Li, Y.J. Wu, H. Tanaka, T. Yamamoto, M. Kuwabara, J. Am. Ceram. Soc. 87, 1578 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Applied Science for Electronics and MaterialsKyushu UniversityKasugaJapan
  3. 3.College of Chemical Engineering and Materials ScienceZhejiang University of TechnologyHangzhouChina

Personalised recommendations