Skip to main content
Log in

Current status of resistive nonvolatile memories

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Several emerging nonvolatile memories (NVMs) such as ferroelectric memory, magnetoresistive rams and ovonic universal memory are being developed for possible applications. Resistive random access memory (RRAM) is another interesting competitor in the class of NVMs. The RRAM is based on a large change in electrical resistance when the memory film is exposed to voltage or current pulses, and can keep high or low resistance states without any power. The ideal RRAM should have the superior properties of reversible switching, long retention time, multilevel switching, simple structure, small size, and low operating voltage. Perovskite oxides, transition metal oxides, and molecular materials were found to have resistive memory properties. This presentation reviews the ongoing research and development activities on future resistance NVMs technologies incorporating these new memory materials. The possible basic mechanisms for their bistable resistance switching are described. The effect of processing, composition, and structure on the properties of resistive memory materials and consequently the devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.Y. Liu, P.H. Wu, A. Wang, W.Y. Jang, J.C. Young, K.Y. Chiu, T.Y. Tseng, IEEE Electron Device Lett. 26, 351 (2005)

    Article  ADS  CAS  Google Scholar 

  2. S.Q. Liu, N.J. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000)

    Article  ADS  CAS  Google Scholar 

  3. A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)

    Article  ADS  CAS  Google Scholar 

  4. C. Rossel, G.I. Meijer, D. Bremaud, D. Widmer, Appl. Phys. Lett. 90, 2892 (2001)

    CAS  Google Scholar 

  5. A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Appl. Phys. Lett. 83, 957 (2003)

    Article  ADS  CAS  Google Scholar 

  6. S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen, A.J. Jacobson, Appl. Phys. Lett. 85, 317 (2004)

    Article  ADS  CAS  Google Scholar 

  7. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004)

    Article  ADS  CAS  Google Scholar 

  8. A. Odagawa, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, Phys. Rev. B 70, 224403 (2004)

    Article  ADS  Google Scholar 

  9. C. Papagianni, Y.B. Nian, Y.Q. Wang, N.J. Wu, A. Ignatiev, IEEE Non-Volatile Memory Technology Symposium 2004, 125 (2004)

    Google Scholar 

  10. S. Duhalde, M. Villafuerte, G. Juarez, S.P. Heluani, Physica. B 354, 11–15 (2004)

    Article  ADS  CAS  Google Scholar 

  11. R. Dong, Q. Wang, L. Chen, X. Li, Appl. Phys. A 80,13–16 (2005)

    Article  ADS  CAS  Google Scholar 

  12. R. Dong, Q. Wang, L.D. Chen, D.S. Shang, T.L. Chen, X.M. Li, W.Q. Zhang, Appl. Phys. Lett. 86, 172107 (2005)

    Article  ADS  Google Scholar 

  13. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, J.T. Moon, IEEE Tech. Dig. Int. Electron Devices Meet. 2004, 587 (2004)

    Article  Google Scholar 

  14. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.-S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.-S. Kim, J.S. Choi, B.H. Park, Appl. Phys. Lett. 85, 5655 (2004)

    Article  ADS  CAS  Google Scholar 

  15. S. Seo, M.J. Lee, D.H. Seo, S.K. Choi, D.-S. Suh, Y.S. Joung, I.K. Yoo, I.S. Byun, I.R. Hwang, S.H. Kim, B.H. Park, Appl. Phys. Lett. 86, 093509 (2005)

    Article  ADS  Google Scholar 

  16. H. Sim, D. Choi, D. Lee, S. Seo, M.J. Lee, I.K. Yoo, H. Hwang, IEEE Electron Device Lett. 26, 292 (2005)

    Article  ADS  CAS  Google Scholar 

  17. W.W. Zhuang, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu, A. Ignatiev, IEEE Tech. Dig. Int. Electron Devices Meet. 2002, 193 (2002)

    Google Scholar 

  18. Y. Segui, Bui Ai, H. Carchano, Appl. Phys. Lett. 47, 140 (1976)

    CAS  Google Scholar 

  19. D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, G. Hass, Appl. Phys. Lett. 85, 5763 (2004)

    Article  ADS  CAS  Google Scholar 

  20. H. Pagnia, N. Sotnic, Phys. Status Solidi vol.(a) 108(11), 11–65 (1988)

    Article  Google Scholar 

  21. A. Bandyopadhyay, A.J. Pal, Appl. Phys. Lett. 84, 999 (2004)

    Article  ADS  CAS  Google Scholar 

  22. M. Kushida, H. Inomata, Y. Tanaka, K. Harada, K. Saito, K. Sugita, Jpn. J. Appl. Phys. 41, L281–L283 (2002)

    Article  ADS  CAS  Google Scholar 

  23. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nano Lett. 4(1), 133–136 (2004)

    Article  ADS  CAS  Google Scholar 

  24. D.M. Taylor, C.A. Mills, J. Appl. Phys. 90, 306 (2001)

    Article  ADS  CAS  Google Scholar 

  25. L.P. Ma, S. Pyo, J. Ouyang, Q. Xu, Y. Yang, Appl. Phys. Lett. 82, 1419 (2003)

    Article  ADS  CAS  Google Scholar 

  26. S.H. Kang, T. Crisp, L. Kymissis, V. Bulovic, Appl. Phys. Lett. 85, 4666 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price Jr., A.M. Rawlett, D.A. Allara, J.M. Tour, P.S. Weiss, Science, 292, 2303 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay, Science 300, 1413 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  29. M.D. Ventra, S.-G. Kim, S.T. Pantelides, N.D. Lang, Phys. Rev. Lett. 86, 672 (2001)

    Article  Google Scholar 

  30. L.P. Ma, Q. Xu, Y. Yang, Appl. Phys. Lett. 84, 4908 (2004)

    Article  ADS  CAS  Google Scholar 

  31. T. Tsujioka, H. Kondo, Appl. Phys. Lett. 83, 937 (2003)

    Article  ADS  CAS  Google Scholar 

  32. H.J. Gao, K. Sohlberg, Z.Q. Xu, H.Y. Chen, S.M. Hou, L.P. Ma, X.W. Fang, S.J. Pang, S.J. Pennycook, Phys. Rev. Lett. 84, 1780 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  33. Ju. H. Krieger, S.V. Trubin, S.B. Vaschenko, N.F. Yudanov, Syn. Met. 112, 199 (2001)

    Article  Google Scholar 

  34. R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, C. Dehm, IEEE Tech. Dig. Int. Electron Devices Meet. 2003, 10.2.1 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CY., Liu, CY., Lin, CC. et al. Current status of resistive nonvolatile memories. J Electroceram 21, 61–66 (2008). https://doi.org/10.1007/s10832-007-9081-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9081-y

Keywords

Navigation