Advertisement

Journal of Electroceramics

, Volume 19, Issue 4, pp 251–257 | Cite as

Lead-free piezoelectric ceramics vs. PZT?

  • Shujun Zhang
  • Ru Xia
  • Thomas R. Shrout
Article

Abstract

Investigations in the development of lead-free piezoelectric ceramics have recently claimed properties comparable to that of PZT-based materials. In this work, the dielectric and piezoelectric properties of the various systems were contrasted in relation to their respective Curie temperatures. Analogous to PZT, enhanced properties are noted for morphotropic phase boundary (MPB) compositions in the Na,BiTiO3–BaTiO3 and the ternary system with K,BiTiO3, but offer properties significantly lower than that of PZTs. The consequence of a ferroelectric to antiferroelectric transition well below T C further limits their usefulness. Though comparable with respect to T C, enhanced properties reported in the K,NaNbO3 family are the result of increased polarizability associated with the T orthor-tetragonal polymorphic phase transition being compositionally shifted downward and not from a MPB as widely reported. As expected, the properties are strongly temperature dependent unlike that observed for MPB systems.

Keywords

Piezoelectric Lead-free ceramic PZT 

Reference

  1. 1.
    For example: the legislation will be enforced in the EU as the draft directives on waste from electrical and electronic equipment (WEEE), restriction of hazardous substances (RoHS) and end-of life vehicles (ELV)Google Scholar
  2. 2.
    B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics, (Academic, New York, 1971) p.92Google Scholar
  3. 3.
    D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics (ed), O.E. Mattiat, (Plenum, London, 1971), Ch.2Google Scholar
  4. 4.
    A.J. Moulson, J.M. Herbert, Electroceramics––Materials, Properties, Applications, (Chapman & Hall, London, 1990)Google Scholar
  5. 5.
    J.M. Herbert, Ferroelectric Transducers and Sensors, (Gordon and Breach Science, New York, 1982)Google Scholar
  6. 6.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  7. 7.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Wang, R. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phys. Status Sol, A 202, R57 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar
  11. 11.
    G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S.J. Zhang, T. R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Matsubara, K. Kikuta, S. Hirano, J. Appl. Phys. 97, 114105 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Saito, H. Takao, 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics (ed.), C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo, (Maryland, 2005), p.103Google Scholar
  15. 15.
    J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sens. Actuators, A 126, 41 (2006)CrossRefGoogle Scholar
  16. 16.
    S.H. Choy, X.X. Wang, H.L.W. Chan, C.L. Choy, Appl. Phys, A 82, 715 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Yuan, S. Zhang, X. Zhou, J. Liu, Jpn. J. Appl. Phys. 45, 831 (2006)CrossRefGoogle Scholar
  18. 18.
    D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)CrossRefGoogle Scholar
  19. 19.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Hirama, R. Hoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 43, 7556 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Takenaka, H. Nagata, Key Eng. Mater. 157–8, 57 (1999)CrossRefGoogle Scholar
  22. 22.
    T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005)CrossRefGoogle Scholar
  23. 23.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  24. 24.
    L. Wu, D. Xiao, D. Lin, J. Zhu, P. Yu, Jpn. J. Appl. Phys. 44, 8515 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Lin, D. Xia, J. Zhu, P. Yu, Phys. Status Solidi, A 202, R89 (2005)CrossRefGoogle Scholar
  26. 26.
    D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics (ed.), O.E. Mattiat, (Plenum, London, 1971), Ch.2Google Scholar
  27. 27.
    H. Jaffe, J. Am. Ceram. Soc. 41, 494 (1958)CrossRefGoogle Scholar
  28. 28.
    D. Schofield, R.F. Brown, Can. J. Phys. 35, 594 (1957)Google Scholar
  29. 29.
    Y. Doshida, H. Kishi, Y. Hattori, A. Makiya, S. Tanaka, K. Uematsu, T. Kimura, 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics (ed.), C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo, (Maryland, 2005), p.123Google Scholar
  30. 30.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)CrossRefGoogle Scholar
  31. 31.
    G.H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967)CrossRefGoogle Scholar
  32. 32.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  33. 33.
    G. Shirano, H. Danner, A. Pavlovie, R. Pepinsky, Phys. Rev. 93, 672 (1954)CrossRefGoogle Scholar
  34. 34.
    S.J. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (in press)Google Scholar
  35. 35.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations