Advertisement

Journal of Electroceramics

, Volume 19, Issue 1, pp 25–47 | Cite as

Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals

  • Matthew Davis
Article

Abstract

Understanding the relationship between the structure and “giant” piezoelectric properties of relaxor ferroelectric solid solutions (1–x)Pb(Mg1/3Nb2/3)O3xPbTiO3 [PMN–xPT] and (1–x)Pb(Zn1/3Nb2/3)O3xPbTiO3 [PZN–xPT] is an extremely difficult task. In this article, three main paradigms are reviewed. In the first, the monoclinic phases present at the morphotropic phase boundary (MPB) are responsible for the giant piezoelectric response in that they allow, or at least facilitate, polarization rotation. In the second, a strong polarization rotation effect is explained by the large piezoelectric shear coefficients of zero-field rhombohedral and orthorhombic phases due to the near degeneracy at the MPB and the intrinsic softness of the relaxor state; zero-field monoclinic symmetries are explained by residually distorted rhombohedral and orthorhombic phases in the presence of internal stresses and/or residual bias fields. In the third, the monoclinic “phases” are composed of very finely twinned rhombohedral or tetragonal domains. In this “adaptive phase” model, based on that for ferroelastic martensites, the large electric-field induced strains are extrinsic in nature and result from the progressive switching of the component “nano-twins”; the ease of polarization rotation is explained by a high domain wall mobility. These paradigms remain to be mutually reconciled. The article includes a thorough review of the history of PMN–xPT and PZN–xPT single crystals and, particularly, the most important work done over the last decade.

Keywords

Piezoelectric Ferroelectric Relaxor Single crystal 

Notes

Acknowledgements

This article is dedicated to the memory of Dr. Hirotake Okino, a great engineer, scientist, colleague and friend who died tragically in July 2006. Hirotake was the pioneer of new AFM-based techniques for investigation of the domain structures in ferroelectric materials and did much to illuminate the sub-micron scale structure of PMN–xPT and PZN–xPT. He will be sadly missed.

The author acknowledges financial support from the Swiss National Science Foundation.

References

  1. 1.
    S.-E.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997)Google Scholar
  2. 2.
    S.-E.E. Park, W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 6, 11–18 (2002)Google Scholar
  3. 3.
    S.-E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 4, 1140–1147 (1997)Google Scholar
  4. 4.
    M.J. Zipparo, K.K. Shung, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1038–1048 (1997)Google Scholar
  5. 5.
    K.A. Snook, P.W. Rehrig, X. Jiang, R.J. Meyer, D. Markley, in Proceedings IEEE Ultrasonics Symposium, (2005), pp. 1065–1068Google Scholar
  6. 6.
    C.G. Oakley, M.J. Zipparo, in Proceedings of the 12th IEEE Ultrasonics Symposium, vol. 2 (2000), pp. 1157–1167Google Scholar
  7. 7.
    K. Harada, Y. Hosono, T. Kobayashi, Y. Yamashita, S. Wada, T. Tsurumi, J. Cryst. Growth 237, 848–852 (2002)Google Scholar
  8. 8.
    T. Ritter, X. Geng, K.K. Shung, P.D. Lopath, S.-E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 792–800 (2000)Google Scholar
  9. 9.
    B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002)Google Scholar
  10. 10.
    B. Noheda, D.E. Cox, Phase Transit. 79, 5–20 (2005)Google Scholar
  11. 11.
    H. Fu, R.E. Cohen, Nature 403, 281–283 (2000)Google Scholar
  12. 12.
    E.H. Kisi, R.O. Piltz, J.S. Forrester, C.J. Howard, J. Phys., Condens. Matter 15, 3631–3640 (2003)Google Scholar
  13. 13.
    K.K. Rajan, L.C. Lim, Appl. Phys. Lett. 83, 5277–5279 (2003)Google Scholar
  14. 14.
    M.K. Durbin, J.C. Hicks, S.-E. Park, T.R. Shrout, J. Appl. Phys. 87, 8159–8164 (2000)Google Scholar
  15. 15.
    K. Fujishiro, R. Vlokh, Y. Uesu, Y. Yamada, J.-M. Kiat, B. Dkhil, Y. Yamashita, Jpn. J. Appl. Phys. Pt. 1 37, 5246–5248 (1998)Google Scholar
  16. 16.
    L.C. Lim, F.J. Kumar, A. Amin, J. Appl. Phys. 93, 3671–3673 (2003)Google Scholar
  17. 17.
    J.-K. Lee, J.Y. Yi, K.-S. Hong, S.-E. Park, J. Millan, J. Appl. Phys. 91, 4474 (2002)Google Scholar
  18. 18.
    M. Budimir, D. Damjanovic, N. Setter, J. Appl. Phys. 94, 6753–6761 (2003)Google Scholar
  19. 19.
    J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298–1302 (1982)Google Scholar
  20. 20.
    D. Damjanovic, M. Budimir, M. Davis, N. Setter, Appl. Phys. Lett. 83, 527–529 (2003)Google Scholar
  21. 21.
    R. Zhang, B. Jiang, W. Cao, Appl. Phys. Lett. 82, 3737–3739 (2003)Google Scholar
  22. 22.
    M. Davis, Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2006Google Scholar
  23. 23.
    A.G. Khachaturyan, S.M. Shapiro, S. Semenovskaya, Phys. Rev., B 43, 832–843 (1991)Google Scholar
  24. 24.
    Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J. Appl. Phys. 94, 3629–3640 (2003)Google Scholar
  25. 25.
    D. Viehland, J. Appl. Phys. 88, 4794 (2000)Google Scholar
  26. 26.
    Y.U. Wang, Phys. Rev., B 73, 014113 (2006)Google Scholar
  27. 27.
    D.L. Corker, A.M. Glazer, R.W. Whatmore, A. Stallard, F. Fauth, J. Phys., Condens. Matter 10, 6251–6269 (1998)Google Scholar
  28. 28.
    A.M. Glazer, P.A. Thomas, K.Z. Baba-Kishi, G.K.H. Pang, C.W. Tai, Phys. Rev., B 70, 184123 (2004)Google Scholar
  29. 29.
    B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, G. Shirane, Phys. Rev., B 61, 8687–8695 (2000)Google Scholar
  30. 30.
    A.J. Bell, J. Mater. Sci. 41, 13–25 (2006)Google Scholar
  31. 31.
    A.K. Singh, D. Pandey, O. Zaharko, Phys. Rev., B 74, 024101 (2006)Google Scholar
  32. 32.
    L.E. Cross, Ferroelectrics 76, 241–267 (1987)Google Scholar
  33. 33.
    D.-H. Lee, N.-K. Kim, Mater. Lett. 34, 299–304 (1998)Google Scholar
  34. 34.
    O. Noblanc, P. Gaucher, G. Calvarin, J. Appl. Phys. 79, 4291–4297 (1996)Google Scholar
  35. 35.
    A.A. Bokov, H. Luo, Z.-G. Ye, Mater. Sci. Eng., B 120, 206–209 (2005)Google Scholar
  36. 36.
    H. Fan, L. Kong, L. Zhang, X. Yao, J. Mater. Sci. 34, 6143–6149 (1999)Google Scholar
  37. 37.
    S.-A. Seo, K.H. Noh, S.-I. Kwun, J. Korean Phys. Soc. 35, 496–499 (1999)Google Scholar
  38. 38.
    J. Han, W. Cao, Phys. Rev., B 68, 134102 (2003)Google Scholar
  39. 39.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, 1971)Google Scholar
  40. 40.
    C.-S. Tu, C.-L. Tsai, V.H. Schmidt, H. Luo, Z. Yin, J. Appl. Phys. 89, 7908–7916 (2001)Google Scholar
  41. 41.
    A. Lebon, H. Dammak, G. Calvarin, I.O. Ahmedou, J. Phys., Condens. Matter 14, 7035–7043 (2002)Google Scholar
  42. 42.
    H. Wang, H. Xu, H. Luo, Z. Yin, Appl. Phys. Lett. 87, 012904 (2005)Google Scholar
  43. 43.
    N.d. Mathan, E. Husson, G. Calvarin, J.R. Gavarri, A.W. Hewat, A. Morell, J. Phys., Condens. Matter 3, 8159–8171 (1991)Google Scholar
  44. 44.
    P.M. Gehring, W. Chen, Z.-G. Ye, G. Shirane, J. Phys., Condens. Matter 16, 7113–7121 (2004)Google Scholar
  45. 45.
    Z.-G. Ye, Y. Bing, J. Gao, A.A. Bokov, P. Stephens, B. Noheda, G. Shirane, Phys. Rev., B 67, 104104 (2003)Google Scholar
  46. 46.
    G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, C. Stock, G. Shirane, Phys. Rev., B 70, 064107 (2004)Google Scholar
  47. 47.
    K. Ohwada, K. Hirota, P.W. Rehrig, Y. Fujii, G. Shirane, Phys. Rev., B 67, 094111 (2003)Google Scholar
  48. 48.
    B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, E. Suard, Phys. Rev., B 65, 024104 (2001)Google Scholar
  49. 49.
    E.H. Kisi, J.S. Forrester, J. Phys., Condens. Matter 17, L381–L384 (2005)Google Scholar
  50. 50.
    G. Xu, H. Hiraka, G. Shirane, K. Ohwada, Appl. Phys. Lett. 84, 3975–3977 (2004)Google Scholar
  51. 51.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 96, 2811–2815 (2004)Google Scholar
  52. 52.
    K.K. Rajan, M.J. Zhang, L.-C. Lim, Jpn. J. Appl. Phys. 44, 264–266 (2005)Google Scholar
  53. 53.
    H. Cao, J. Li, D. Viehland, G. Xu, G. Shirane, Appl. Phys. Lett. 88, 072915 (2006)Google Scholar
  54. 54.
    H. Cao, J. Li, D. Viehland, G. Xu, Phys. Rev., B 73, 184110 (2006)Google Scholar
  55. 55.
    M. Matsushita, Y. Tachi, K. Echizenya, J. Cryst. Growth 237, 853–857 (2002)Google Scholar
  56. 56.
    H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin, Jpn. J. Appl. Phys. Pt. 1 39, 5581–5585 (2000)Google Scholar
  57. 57.
    F.J. Kumar, L.-C. Lim, S.P. Lim, K.H. Lee, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 203–209 (2003)Google Scholar
  58. 58.
    P. Bao, F. Yan, X. Lu, J. Zhu, H. Shen, Y. Wang, H. Luo, Appl. Phys. Lett. 88, 092905 (2006)Google Scholar
  59. 59.
    A.A. Bokov, Z.-G. Ye, J. Appl. Phys. 91, 6656–6661 (2002)Google Scholar
  60. 60.
    R.R. Chien, V.H. Schmidt, L.-W. Hung, C.-S. Tu, J. Appl. Phys. 97, 114112 (2005)Google Scholar
  61. 61.
    D. Zekria, V.A. Shuvaeva, A.M. Glazer, J. Phys., Condens. Matter 17, 1593–1600 (2005)Google Scholar
  62. 62.
    Z.-G. Ye, M. Dong, J. Appl. Phys. 87, 2312–2319 (2000)Google Scholar
  63. 63.
    D.-L. Li, G.-S. Xu, P.-C. Wang, X.-M. Pan, H.-S. Luo, Z.-W. Yin, Ferroelectrics 253, 31–38 (2001)Google Scholar
  64. 64.
    G. Xu, H. Luo, Z. Qi, H. Xu, Z. Yin, J. Mater. Res. 16, 932–937 (2001)Google Scholar
  65. 65.
    A.-E. Renault, H. Dammak, G. Calvarin, M.P. Thi, P. Gaucher, Jpn. J. Appl. Phys. Pt. 1 41, 3846–3850 (2002)Google Scholar
  66. 66.
    J. Han, W. Cao, Appl. Phys. Lett. 83, 2040–2042 (2003)Google Scholar
  67. 67.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, 1993)Google Scholar
  68. 68.
    D. Viehland, M.-C. Kim, Z. Xu, J.-F. Li, Appl. Phys. Lett. 67, 2471–2473 (1995)Google Scholar
  69. 69.
    F. Bai, J. Li, D. Viehland, Appl. Phys. Lett. 85, 2313–2315 (2004)Google Scholar
  70. 70.
    Z. Xu, M.-C. Kim, J.-F. Li, D. Viehland, Philos. Mag., A 74, 395–406 (1996)Google Scholar
  71. 71.
    M.L. Mulvihill, L.E. Cross, W. Cao, K. Uchino, J. Am. Ceram. Soc. 80, 1462–1468 (1997)CrossRefGoogle Scholar
  72. 72.
    M. Abplanalp, D. Barosova, P. Bridenbaugh, J. Erhart, J. Fousek, P. Gunter, J. Nosek, M. Sulc, J. Appl. Phys. 91, 3797–3805 (2002)Google Scholar
  73. 73.
    M. Iwata, K. Katsuraya, S. Tachizaki, J. Hlinka, I. Suzuki, M. Maeda, N. Yasuda, Y. Ishibashi, Jpn. J. Appl. Phys. 43, 6812–6815 (2004)Google Scholar
  74. 74.
    M. Iwata, K. Katsuraya, I. Suzuki, M. Maeda, N. Yasuda, Y. Ishibashi, Jpn. J. Appl. Phys. Part 1 42, 6201–6204 (2003)Google Scholar
  75. 75.
    S. Madeswaran, S.V. Rajasekaran, R. Jayavel, S. Ganesamoorthy, G. Behr, Mater. Sci. Eng., B 120, 32–36 (2005)Google Scholar
  76. 76.
    M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, P. Gunter, J. Appl. Phys. 74, 1287–1297 (1993)Google Scholar
  77. 77.
    I.K. Bdikin, V.V. Shvartsman, A.L. Kholkin, Appl. Phys. Lett. 83, 4232–4234 (2003)Google Scholar
  78. 78.
    D.J. Quesnel, Presented at the 2006 US navy workshop on acoustic transduction materials and devices, State College, PA, USAGoogle Scholar
  79. 79.
    G. Burns, F.H. Dacol, Solid State Commun. 48, 853–856 (1983)Google Scholar
  80. 80.
    G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane, Nature Materials 5, 134–140 (2006)Google Scholar
  81. 81.
    A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch, H. Moudden, Eur. Phys. J., B 11, 13–20 (1999)Google Scholar
  82. 82.
    K. Hirota, Z.-G. Ye, S. Wakimoto, P.M. Gehring, G. Shirane, Phys. Rev., B 65, 104105 (2002)Google Scholar
  83. 83.
    H. Hellwig, A. Sehirlioglu, D.A. Payne, P. Han, Phys. Rev., B 73, 094126 (2006)Google Scholar
  84. 84.
    D. La-Orauttapong, J. Toulouse, Z.-G. Ye, W. Chen, R. Erwin, J.L. Robertson, Phys. Rev., B 67, 134110 (2003)Google Scholar
  85. 85.
    G. Schmidt, Ferroelectrics 78, 199–206 (1988)Google Scholar
  86. 86.
    A.A. Bokov, Ferroelectrics 131, 49–55 (1992)Google Scholar
  87. 87.
    M.D. Glinchuk, Br. Ceram., Trans. 103, 76–82 (2004)Google Scholar
  88. 88.
    A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31–52 (2006)Google Scholar
  89. 89.
    W. Kleemann, J. Mater. Sci. 41, 129–136 (2006)Google Scholar
  90. 90.
    R. Blinc, V.V. Laguta, B. Zalar, J. Banys, J. Mater. Sci. 41, 27–30 (2006)Google Scholar
  91. 91.
    B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross, Phys. Rev., B 63, 014103 (2000)Google Scholar
  92. 92.
    T. Yamamoto, Jpn. J. Appl. Phys. Part 1 35, 5104–5108 (1996)Google Scholar
  93. 93.
    S.-E. Park, T.R. Shrout, Mater. Res. Innov. 1, 20–25 (1997)Google Scholar
  94. 94.
    G. A. Rossetti, Jr., W. Zhang, A.G. Khachaturyan, Appl. Phys. Lett. 88, 072912 (2006)Google Scholar
  95. 95.
    J.Y. Li, R.C. Rogan, E. Ustündag, K. Bhattacharya, Nature Materials 4, 776–781 (2005)Google Scholar
  96. 96.
    J.F. Nye, Physical Properties of Crystals, 2nd edn. (Clarendon Press, Oxford, 1985)Google Scholar
  97. 97.
    X. Liu, E.F. McCandlish, L.E. McCandlish, K. Mikulka-Bolen, R. Ramesh, F. Cosandey, G. A. Rossetti, Jr., R.E. Riman, Langmuir 21, 3207–3212 (2005)Google Scholar
  98. 98.
    G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys., Solid State, 1429 (1959)Google Scholar
  99. 99.
    S.W. Choi, T.R. Shrout, S.J. Jang, A.S. Bhalla, Mater. Lett. 8, 253–255 (1989)Google Scholar
  100. 100.
    K. Uchino, S. Nomura, L.E. Cross, S.J. Jang, R.E. Newnham, J. Appl. Phys. 51, 1142–1145 (1980)Google Scholar
  101. 101.
    S.J. Jang, K. Uchino, S. Nomura, L.E. Cross, Ferroelectrics 27, 31–34 (1980)Google Scholar
  102. 102.
    S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17, 1245–1250 (1982)Google Scholar
  103. 103.
    D.J. Taylor, D. Damjanovic, A.S. Bhalla, Ferroelectrics 118, 143–155 (1991)Google Scholar
  104. 104.
    S.W. Choi, T.R. Shrout, S.J. Jang, A.S. Bhalla, Ferroelectrics 100, 29–38 (1989)Google Scholar
  105. 105.
    J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 37, 579–582 (1981)Google Scholar
  106. 106.
    T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Ferroelectr., Lett. 12, 63–69 (1990)Google Scholar
  107. 107.
    D. Damjanovic, J. Am. Ceram. Soc. 88, 2663–2676 (2005)Google Scholar
  108. 108.
    J. Erhart, Phase Transit. 77, 989–1074 (2004)Google Scholar
  109. 109.
    J. Fousek, V. Janovec, J. Appl. Phys. 40, 135–142 (1969)Google Scholar
  110. 110.
    S. Wada, S.-E. Park, L.E. Cross, T.R. Shrout, Ferroelectrics 221, 147–155 (1999)Google Scholar
  111. 111.
    D.-S. Paik, S.-E. Park, S. Wada, S.-F. Liu, T.R. Shrout, J. Appl. Phys. 85, 1080–1083 (1999)Google Scholar
  112. 112.
    M.K. Durbin, E.W. Jacobs, J.C. Hicks, Appl. Phys. Lett. 74, 2848–2850 (1999)Google Scholar
  113. 113.
    B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059–2061 (1999)Google Scholar
  114. 114.
    D. Vanderbilt, M.H. Cohen, Phys. Rev., B 63, 094108 (2001)Google Scholar
  115. 115.
    R.E. Newnham, Properties of Materials (Oxford University Press, Oxford, 2005)Google Scholar
  116. 116.
    X.-h. Du, J. Zheng, U. Belegundu, K. Uchino, Appl. Phys. Lett. 72, 2421–2423 (1998)Google Scholar
  117. 117.
    R. Clarke, R.W. Whatmore, J. Cryst. Growth 33, 29–38 (1976)Google Scholar
  118. 118.
    R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423–5426 (2000)Google Scholar
  119. 119.
    L. Bellaiche, A. Garcia, D. Vanderbilt, Phys. Rev., B 64, 060103(R) (2001)Google Scholar
  120. 120.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 13–25 (1989)Google Scholar
  121. 121.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)Google Scholar
  122. 122.
    D.E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yamada, Appl. Phys. Lett. 79, 400–402 (2001)Google Scholar
  123. 123.
    J.-M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, G. Calvarin, Phys. Rev., B 65, 064106 (2002)Google Scholar
  124. 124.
    Z.-G. Ye, B. Noheda, M. Dong, D. Cox, G. Shirane, Phys. Rev., B 64, 184114 (2001)Google Scholar
  125. 125.
    D. La-Orauttapong, B. Noheda, Z.-G. Ye, P.M. Gehring, J. Toulouse, D.E. Cox, G. Shirane, Phys. Rev., B 65, 144101 (2002)Google Scholar
  126. 126.
    B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.-G. Ye, Phys. Rev., B 66, 054104 (2002)Google Scholar
  127. 127.
    A.K. Singh, D. Pandey, Phys. Rev., B 67, 064102 (2003)Google Scholar
  128. 128.
    A.A. Bokov, Y.-G. Ye, Phys. Rev., B 66, 094112 (2002)Google Scholar
  129. 129.
    A.K. Singh, D. Pandey, Phys. Rev., B 68, 172103 (2003)Google Scholar
  130. 130.
    B. Noheda, D.E. Cox, G. Shirane, S.-E. Park, L.E. Cross, Z. Zhong, Phys. Rev. Lett. 86, 3891 (2001)Google Scholar
  131. 131.
    B. Noheda, Z. Zhong, D.E. Cox, G. Shirane, S.-E. Park, P. Rehrig, Phys. Rev., B 65, 224101 (2002)Google Scholar
  132. 132.
    K. Ohwada, K. Hirota, P.W. Rehrig, P.M. Gehring, B. Noheda, Y. Fujii, S.-E. Park, G. Shirane, J. Phys. Soc. Jpn. 70, 2778–2783 (2001)Google Scholar
  133. 133.
    B. Noheda, D.E. Cox, Phase Transit. 79, 5–20 (2006)Google Scholar
  134. 134.
    J.S. Forrester, R.O. Piltz, E.H. Kisi, G.J. McIntyre, J. Phys., Condens. Matter 13, L825–L833 (2001)Google Scholar
  135. 135.
    H. Cao, F. Bai, N. Wang, J. Li, D. Viehland, G. Xu, G. Shirane, Phys. Rev., B 72, 064104 (2005)Google Scholar
  136. 136.
    H. Cao, F. Bai, J. Li, D. Viehland, G. Xu, H. Hiraka, G. Shirane, J. Appl. Phys. 97, 094101 (2005)Google Scholar
  137. 137.
    F. Bai, N. Wang, J. Li, D. Viehland, P.M. Gehring, G. Xu, G. Shirane, J. Appl. Phys. 96, 1620–1627 (2004)Google Scholar
  138. 138.
    Y. Uesu, M. Matsuda, Y. Yamada, K. Fujishiro, D.E. Cox, B. Noheda, G. Shirane, J. Phys. Soc. Jpn. 71, 960–965 (2002)Google Scholar
  139. 139.
    A.A. Bokov, Z.-G. Ye, J. Appl. Phys. 95, 6347–6359 (2004)Google Scholar
  140. 140.
    G. Xu, H. Luo, H. Xu, Y. Yin, Phys. Rev., B 64, 020102(R) (2001)Google Scholar
  141. 141.
    V.A. Shuvaeva, A.M. Glazer, D. Zekria, J. Phys., Condens. Matter 17, 5709–5723 (2005)Google Scholar
  142. 142.
    M. Shen, D. Yao, W. Cao, Mater. Lett. 59, 3276–3279 (2005)Google Scholar
  143. 143.
    Y. Lu, D.-Y. Jeong, Z.-Y. Cheng, Q.M. Zhang, H.-S. Luo, Z.-W. Yin, D. Viehland, Appl. Phys. Lett. 78, 3109–3111 (2001)Google Scholar
  144. 144.
    C.-S. Tu, R.R. Chien, F.-T. Wang, V.H. Schmidt, P. Han, Phys. Rev., B 70, 220103(R) (2004)Google Scholar
  145. 145.
    Y. Lu, D.-Y. Jeong, Z.-Y. Cheng, T. Shrout, Q.M. Zhang, Appl. Phys. Lett. 80, 1918–1920 (2002)Google Scholar
  146. 146.
    S. Priya, J. Ryu, L.E. Cross, K. Uchino, D. Viehland, Ferroelectrics 274, 121–126 (2002)Google Scholar
  147. 147.
    A. Sehirlioglu, D.A. Payne, P. Han, J. Appl. Phys. 99, 064101 (2006)Google Scholar
  148. 148.
    Y. Guo, H. Luo, D. Ling, H. Xu, T. He, Z. Yin, J. Phys., Condens. Matter 15, L77–L82 (2003)Google Scholar
  149. 149.
    D.I. Woodward, J. Knudsen, I.M. Reaney, Phys. Rev., B 72, 104110 (2005)Google Scholar
  150. 150.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 96, (2004)Google Scholar
  151. 151.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 97, 064101 (2005)Google Scholar
  152. 152.
    D. Viehland, J.F. Li, J. Appl. Phys. 92, 7690–7692 (2002)Google Scholar
  153. 153.
    W. Ren, S.-F. Liu, B.K. Mukherjee, Appl. Phys. Lett. 80, 3174–3176 (2002)Google Scholar
  154. 154.
    M. Davis, D. Damjanovic, N. Setter, Phys. Rev., B 73, 014115 (2006)Google Scholar
  155. 155.
    R.R. Chien, V.H. Schmidt, C.–S. Tu, L.–W. Hung, H. Luo, Phys. Rev., B 69, 172101 (2004)Google Scholar
  156. 156.
    C.-S. Tu, I.-C. Shih, V.H. Schmidt, R. Chien, Appl. Phys. Lett. 83, 1833–1835 (2003)Google Scholar
  157. 157.
    C.-S. Tu, H. Schmidt, I.-C. Shih, R. Chien, Phys. Rev., B 67, 020102(R) (2003)Google Scholar
  158. 158.
    E.A. McLaughlin, T. Liu, C.S. Lynch, Acta Mater. 52, 3849–3857 (2004)Google Scholar
  159. 159.
    Z. Feng, D. Lin, H. Luo, S. Li, D. Fang, J. Appl. Phys. 97, 024103 (2005)Google Scholar
  160. 160.
    Q. Wan, C. Chen, Y.P. Shen, J. Appl. Phys. 98, 024103 (2005)Google Scholar
  161. 161.
    A.J. Bell, J. Appl. Phys. 89, 3907–3914 (2001)Google Scholar
  162. 162.
    I.A. Sergienko, Y.M. Gufan, S. Urazhdin, Phys. Rev., B 65, 144104 (2002)Google Scholar
  163. 163.
    E. Dul’kin, M. Roth, P.-E. Janolin, B. Dkhil, Phys. Rev., B 73, 012102 (2006)Google Scholar
  164. 164.
    L.E. Cross, P. Hana, in Proceedings of 9th US–Japan Seminar on Dielectric and Piezoelectric Ceramics, 1999Google Scholar
  165. 165.
    A. Amin, M.J. Haun, B. Badger, H. McKinstry, L.E. Cross, Ferroelectrics 65, 107–130 (1985)Google Scholar
  166. 166.
    A. Amin, in Proceedings of 14th IEEE International Symposium on Applications of Ferroelectrics, 2004Google Scholar
  167. 167.
    H. Dammak, A.-E. Renault, P. Gaucher, M.P. Thi, G. Calvarin, Jpn. J. Appl. Phys. Pt. 1 10, 6477–6482 (2003)Google Scholar
  168. 168.
    R. Zhang, W. Cao, Appl. Phys. Lett. 85, 6380–6382 (2004)Google Scholar
  169. 169.
    R. Zhang, B. Jiang, W. Cao, Appl. Phys. Lett. 82, 787–789 (2003)Google Scholar
  170. 170.
    K.K. Rajan, J. Jin, L.C. Lim, Presented at the 2006 US navy workshop on acoustic transduction materials and devices, State College, PA, USAGoogle Scholar
  171. 171.
    M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, X. Wu, Phys. Rev., B 50, 5941–5949 (1994)Google Scholar
  172. 172.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 393–401 (1989)Google Scholar
  173. 173.
    D. Damjanovic, M. Budimir, M. Davis, N. Setter, J. Mater. Sci. 41, 65–76 (2006)Google Scholar
  174. 174.
    M. Budimir, D. Damjanovic, N. Setter, Phys. Rev., B 73, 174106 (2006)Google Scholar
  175. 175.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63–86 (1989)Google Scholar
  176. 176.
    R.R. Neurgaonkar, W.K. Cory, J. Opt. Am. B 3, 274–282 (1986)Google Scholar
  177. 177.
    T.R. Shrout, H. Chen, L.E. Cross, Ferroelectrics 74, 317–324 (1987)Google Scholar
  178. 178.
    Z. Li, M. Grimsditch, X. Xu, S.-K. Chan, Ferroelectrics 141, 313–325 (1993)Google Scholar
  179. 179.
    Z.-G. Ye, Curr. Opin. Solid State Mater. Sci. 6, 35–44 (2002)Google Scholar
  180. 180.
    M. Iwata, T. Araki, M. Maeda, I. Suzuki, H. Ohwa, N. Yasuda, H. Orihara, Y. Ishibashi, Jpn. J. Appl. Phys. Pt. 1 11B, 7003–7006 (2002)Google Scholar
  181. 181.
    V.Y. Topolov, A.V. Turik, Defect Diffus. Forum 123–124, 31–50 (1995)Google Scholar
  182. 182.
    G. Metrat, Ferroelectrics 26, 801–804 (1980)Google Scholar
  183. 183.
    V.Y. Topolov, Z.-G. Ye, Phys. Rev., B 70, 094113 (2004)Google Scholar
  184. 184.
    V.Y. Topolov, J. Phys., Condens. Matter 16, 1–7 (2004)Google Scholar
  185. 185.
    V.Y. Topolov, A.V. Turik, J. Phys., Condens. Matter 13, L771–L775 (2001)Google Scholar
  186. 186.
    J. Yin, W. Cao, J. Appl. Phys. 87, 7438–7441 (2000)Google Scholar
  187. 187.
    J. Yin, W. Cao, J. Appl. Phys. 92, 444–448 (2002)Google Scholar
  188. 188.
    J. Erhart, W. Cao, J. Appl. Phys. 86, 1073–1081 (1999)Google Scholar
  189. 189.
    M. Shanthi, K.H. Hoe, C.Y.H. Lim, L.C. Lim, Appl. Phys. Lett. 86, 262908 (2005)Google Scholar
  190. 190.
    Y. Guo, H. Luo, K. Chen, H. Xu, X. Zhang, Z. Yin, J. Appl. Phys. 92, 6134–6138 (2002)Google Scholar
  191. 191.
    A.-E. Renault, H. Dammak, G. Calvarin, P. Gaucher, M.P. Thi, J. Appl. Phys. 97, 044105 (2005)Google Scholar
  192. 192.
    J.H. Ro, M. Cha, Appl. Phys. Lett. 77, 15 (2000), (August)Google Scholar
  193. 193.
    V.D. Kugel, G. Rosenman, Appl. Phys. Lett. 65, 2398–2400 (1994)Google Scholar
  194. 194.
    Y. Zhang, I.S. Baturin, E. Aulbach, D.C. Lupascu, A.L. Kholkin, V.Y. Shur, J. Rödel, Appl. Phys. Lett. 86, 012910 (2005)Google Scholar
  195. 195.
    M. Shen, W. Cao, Appl. Phys. Lett. 86, 192909 (2005)Google Scholar
  196. 196.
    M. Ozgul, S. Trolier-McKinstry, C.A. Randall, J. Appl. Phys. 95, 4296–4302 (2004)Google Scholar
  197. 197.
    W. Yhu, L.E. Cross, Appl. Phys. Lett. 84, 2388–2390 (2004)Google Scholar
  198. 198.
    G. Xu, P.M. Gehring, G. Shirane, Phys. Rev., B 72, 214106 (2005)Google Scholar
  199. 199.
    A. Sehirlioglu, D.A. Payne, Phys. Rev., B 72, 214110 (2005)Google Scholar
  200. 200.
    E.K.H. Salje, Acta Crystallogr., A 47, 453–469 (1991)Google Scholar
  201. 201.
    A.D. Hilton, C.A. Randall, D.J. Barber, T.R. Shrout, Ferroelectrics 93, 379–386 (1989)Google Scholar
  202. 202.
    D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman and Hall, London, 1992)Google Scholar
  203. 203.
    G. Schmidt, G. Borchhardt, J.V. Cieminksi, D. Grützmann, E. Purinsch, V.A. Isupov, Ferroelectrics 42, 3–9 (1982)Google Scholar
  204. 204.
    G. Burns, F.H. Dacol, Solid State Commun. 42, 9–12 (1982)Google Scholar
  205. 205.
    D. Viehland, J. Li, E.V. Colla, J. Appl. Phys. 96, 3379–3381 (2004)Google Scholar
  206. 206.
    X. Meng, K. Baba-Kishi, H. Chan, C.-l. Choy, H. Luo, Jpn. J. Appl. Phys. Part 1 41, 2999–3005 (2002)Google Scholar
  207. 207.
    E. Salje, K. Parlinski, Supercond. Sci. Technol. 4, 93–97 (1991)Google Scholar
  208. 208.
    K. Parlinski, V. Heine, E.K.H. Salje, J. Phys., Condens. Matter 5, 497–518 (1993)Google Scholar
  209. 209.
    J. Sapriel, Phys. Rev., B 12, 5128–5140 (1975)Google Scholar
  210. 210.
    M. Ozgul, K. Takemura, S. Trolier-McKinstry, C.A. Randall, J. Appl. Phys. 89, 5100–5106 (2001)Google Scholar
  211. 211.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. (submitted), (2006)Google Scholar
  212. 212.
    D. Damjanovic, in Science in Hysteresis, vol. 3, ed. by G. Bertotti. Hysteresis in Piezoelectric and Ferroelectric Materials (Elsevier, 2005), p. 337Google Scholar
  213. 213.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 95, 5679–5684 (2004)Google Scholar
  214. 214.
    M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 100, 084103 (2006)Google Scholar
  215. 215.
    H. Wang, J. Zhu, N. Lu, A.A. Bokov, Z.-G. Ye, X.W. Zhang, Appl. Phys. Lett. 89, 042908 (2006)Google Scholar
  216. 216.
    D. Viehland, J.F. Li, J. Appl. Phys. 92, 3985–3989 (2002)Google Scholar
  217. 217.
    D. Viehland, A. Amin, J.F. Li, Appl. Phys. Lett. 79, 1006–1008 (2001)Google Scholar
  218. 218.
    J. Frantti, S. Eriksson, S. Hull, V. Lantto, H. Rundlöf, M. Kakihana, J. Phys., Condens. Matter 15, 6031–6041 (2003)Google Scholar
  219. 219.
    G. Burns, F.H. Dacol, J.P. Remeika, W. Taylor, Phys. Rev., B 26, 2707–2709 (1982)Google Scholar
  220. 220.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)Google Scholar
  221. 221.
    R. Comés, M. Lambert, A. Guinier, Acta Crystallogr., A 26, 244–254 (1969)Google Scholar
  222. 222.
    R. Comès, M. Lambert, A. Guinier, Solid State Commun. 6, 715–719 (1968)Google Scholar
  223. 223.
    P.J. Edwardson, Phys. Rev. Lett. 63, 55–58 (1989)Google Scholar
  224. 224.
    S. Wada, T. Suzuki, M. Osada, M. Kakihana, T. Noma, Jpn. J. Appl. Phys. Part 1 37, 5385–5393 (1998)Google Scholar
  225. 225.
    W. Zhong, D. Vanderbilt, K.M. Rabe, Phys. Rev. Lett. 73, 1861–1864 (1994)Google Scholar
  226. 226.
    A. Kania, E. Talik, M. Kruczek, A. Slodczyk, J. Phys., Condens. Matter 17, 6737–6749 (2005)Google Scholar
  227. 227.
    I. Grinberg, V.R. Cooper, A.M. Rappe, Nature 419, 909–911 (2002)Google Scholar
  228. 228.
    R. Haumont, A. Al-Barakaty, B. Dkhil, J.M. Kiat, L. Bellaiche, Phys. Rev., B 71, 104106 (2005)Google Scholar
  229. 229.
    P.K. Davies, M.A. Akbas, J. Phys. Chem. Solids 61, 159–166 (2000)Google Scholar
  230. 230.
    B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev., B 72, 064113 (2005)Google Scholar
  231. 231.
    L. Bellaiche, A. Garcia, D. Vanderbilt, Phys. Rev. Lett. 84, 5427–5430 (2000)Google Scholar
  232. 232.
    M. Davis, D. Damjanovic, D. Hayem, N. Setter, J. Appl. Phys. 98, 014102 (2005)Google Scholar
  233. 233.
    S. Wada, K. Muraoka, H. Kakemoto, T. Tsurumi, H. Kumagai, Jpn. J. Appl. Phys. Part 1 43, 6692–6700 (2004)Google Scholar
  234. 234.
    S. Wada, K. Yako, H. Kakemoto, J. Erhart, T. Tsurumi, Key Eng. Mater. 269, 19–22 (2004)CrossRefGoogle Scholar
  235. 235.
    S. Wada, H. Kakemoto, T. Tsurumi, Mater. Trans. 45, 178–187 (2004)Google Scholar
  236. 236.
    S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, J. Appl. Phys. 98, 014109 (2005)Google Scholar
  237. 237.
    K. Yako, H. Kakemoto, T. Tsurumi, S. Wada, Mater. Sci. Eng. B 120, 181–185 (2005)Google Scholar
  238. 238.
    R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Phys. Rev., B 72, 014112 (2005)Google Scholar
  239. 239.
    R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Appl. Phys. Lett. 84, 3450–3452 (2004)Google Scholar
  240. 240.
    M. Budimir, D. Damjanovic, N. Setter, Appl. Phys. Lett. 85, 2890–2892 (2004)Google Scholar
  241. 241.
    M. Ahart, A. Asthagiri, P. Dera, H.-k. Mao, R.E. Cohen, R.J. Hemley, Appl. Phys. Lett. 88, 042908 (2006)Google Scholar
  242. 242.
    T. Liu, C.S. Lynch, Acta Mater. 51, 407–416 (2003)Google Scholar
  243. 243.
    J. Yin, B. Jiang, W. Cao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 285–291 (2000)Google Scholar
  244. 244.
    Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956–959 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratory of CeramicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations