Journal of Electroceramics

, Volume 19, Issue 1, pp 3–10 | Cite as

Octahedral tilting, domain structure and piezoelectricity in perovskites and related ceramics



Perovskites and related compounds constitute the majority of commercial piezoelectric ceramics. Typically, most publications note the crystal structure, grain size and properties of piezoelectrics but often very little is reported about their domain and domain wall structure. In many systems, it is the motion or vibration of the domain walls which dominate the piezoelectric and electromechanical coupling coefficients, the so-called extrinsic contribution. This article discusses mechanisms relating to structure and domain wall structure which either suppress or enhance extrinsic contributions. Consideration is given to the ferroic nature of some systems in which octahedral tilt in addition to ferroelectric phase transitions occur. The domain structure at and adjacent to the morphotropic phase boundary in several well-known systems is also discussed.


Octahedral tilting Domain structure Piezoelectricity Perovskites Electron microscopy 


  1. 1.
    Q.M. Zhang, W.Y. Pan, S.J. Jang, L.E. Cross, J. Appl. Phys. 64, 6445 (1988)CrossRefGoogle Scholar
  2. 2.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  3. 3.
    G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)CrossRefGoogle Scholar
  4. 4.
    T. Takenaka, K. Sakata, J. Appl. Phys. 55, 1092 (1984)CrossRefGoogle Scholar
  5. 5.
    R.E. Eitel, C.A. Randall, T.R. Shrout, et al., Jpn. J. Appl. Phys. Part 1, Regular Papers Short Notes & Review Papers 40(10), 5999 (2001)Google Scholar
  6. 6.
    C.A. Randall, R.E. Eitel, T.R. Shrout, et al., J. Appl. Phys. 93(11), 9271 (2003)CrossRefGoogle Scholar
  7. 7.
    R.E. Eitel, C.A. Randall, T.R. Shrout, et al., Jpn. J. Appl. Phys. Part 1, Regular Papers Short Notes & Review Papers 41(4A), 2099 (2002)Google Scholar
  8. 8.
    H. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83(3), 528 (2000)CrossRefGoogle Scholar
  9. 9.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals. (Cambridge University Press 1990)Google Scholar
  10. 10.
    B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74(14), 2059–2061 (1999)CrossRefGoogle Scholar
  11. 11.
    A.M. Glazer, J. Conf. Abstr. 8, 137 (2003)Google Scholar
  12. 12.
    D.I. Woodward, J. Knudsen, I.M. Reaney, Phys. Rev., B 72, 104–110 (2005)CrossRefGoogle Scholar
  13. 13.
    R. Schierholz, R. Thiesman, H. Kungl, H. Fuess, Acta Crystallogr. A61, C400 (2005)Google Scholar
  14. 14.
    D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)CrossRefGoogle Scholar
  15. 15.
    S.K. Ragini Mishra, D. Pandey, H. Lemmens, G. Van Tendeloo, Phys. Rev., B 64 (2001)Google Scholar
  16. 16.
    R. Ranjan, S.K. Ragini Mishra, D. Pandey, B.J. Kennedy, Phys. Rev., B 65 (2001)Google Scholar
  17. 17.
    H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Am. Ceram. Soc. 85(9), 2337–2344 (2002)CrossRefGoogle Scholar
  18. 18.
    H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, H. Thomas, J. Uro Ceram. Soc. 21, 1371–1375 (2001)CrossRefGoogle Scholar
  19. 19.
    A.M. Glazer, Acta Crystallogr. B28, 3384–3392 (1972)Google Scholar
  20. 20.
    I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984–3990 (1994)CrossRefGoogle Scholar
  21. 21.
    I. Sterianou, I.M. Reaney, D.C. Sinclair, D.I. Woodward, D.A. Hall, A.J. Bell, T.P. Comyn, Appl. Phys. Lett. 87(24):Art. no. 242901 (2005)Google Scholar
  22. 22.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys 95(7), 3633–3639 (2004)CrossRefGoogle Scholar
  23. 23.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94(5), 3313–3318 (2003)CrossRefGoogle Scholar
  24. 24.
    D.I. Woodward, I.M. Reaney, J. Phys.-CM 16(49), 8823–8834 (2004)Google Scholar
  25. 25.
    C.A. Randall, D.J. Barber, R.W. Whatmore, J. Mater. Sci. 22(3), 925–931 (1987)CrossRefGoogle Scholar
  26. 26.
    W.E. Lee, I.M. Reaney, M.A. McCoy, Brit. Ceram. Proc. 55, 199–212 (1995)Google Scholar
  27. 27.
    B. Aurivillius, Ark. Kemi 59, 499 (1949)Google Scholar
  28. 28.
    R. Newnham, R. Wolfe, J. Dorrian, Mater. Res. Bull. 6, 1029 (1971)CrossRefGoogle Scholar
  29. 29.
    D.Y. Suarez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16(11), 3139–3149 (2001)Google Scholar
  30. 30.
    H.X. Yan, H.T. Zhang, M.J. Reece, X.L. Dong, Appl. Phys. Lett. 87(8): Art. no. 082911 (2005)Google Scholar
  31. 31.
    I.M. Reaney, M. Roulin, H.S. Shulman, N. Setter, Ferroelectrics 165, 295–305 (1995)Google Scholar
  32. 32.
    C.H. Hervoches, J.T.S. Irvine, P. Lightfoot, Phys. Rev., B 64(10): Art. no. 100102 (2001)Google Scholar
  33. 33.
    C.H. Hervoches, A. Snedden A., R. Riggs, S.H. Kilcoyne, P. Manuel, P.J. Lightfoot, Solid State Chem. 164, 280–291 (2002)CrossRefGoogle Scholar
  34. 34.
    Q.D. Zhou, B.J. Kennedy, C.J. Howard, Chem. Mater. 15(26), 5025–5028 (2003)CrossRefGoogle Scholar
  35. 35.
    I.M. Reaney, D. Damjanovic, J. Appl. Phys. 80(7), 4223–4225 (1996)CrossRefGoogle Scholar
  36. 36.
    H.D. Megaw, Crystal Structures: A Working Approach. (W. B. Saunders, Philadelphia/London/Toronto)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations