Advertisement

Journal of Electroceramics

, Volume 18, Issue 1–2, pp 111–120 | Cite as

Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes

Part II: Experimental assessment of the reaction kinetics
  • Michel Prestat
  • Anna Infortuna
  • Sybille Korrodi
  • Samuel Rey-Mermet
  • Paul Muralt
  • Ludwig J. Gauckler
Article

Abstract

The mechanism and kinetics of oxygen reduction at thin dense two-dimensional \( {\text{La}}_{{0.52}} {\text{Sr}}_{{0.48}} {\text{Co}}_{{0.18}} {\text{Fe}}_{{0.82}} {\text{O}}_{{3 - \delta }} \) (LSCF) electrodes have been investigated in air between 500 and 700 °C with electrochemical impedance spectroscopy and steady-state voltammetry. Dense and geometrically well-defined LSCF films with various thicknesses ranging between 16 and 766 nm have been prepared on cerium gadolinium oxide substrates by pulsed laser deposition and structured with photolithography. The current collection was ensured by a porous LSCF layer. A good agreement was found between the experimental data and the impedance of the reaction model calculated with state-space modelling for various electrode potentials and thicknesses. It was evidenced that oxygen adsorption, incorporation into the LSCF and bulk diffusion are rate-determining while charge transfer at the electrode/electrolyte interface remains at quasi-equilibrium. The 16 and 60 nm thin dense LSCF electrodes appear to be more active towards oxygen reduction than thicker layers and porous films at 600 and 700°C.

Keywords

Oxygen reduction Solid oxide fuel cells Dense films Impedance spectroscopy Grain size 

Notes

Acknowledgements

The financial support of ETH-Zurich (project TH-6/00-2) is gratefully acknowledged. The authors thank L. Cavalli, S. Schlumpf and M. Koch for excellent technical support.

References

  1. 1.
    M. Prestat, J.F. Koenig, L.J. Gauckler, J. Electroceramics (in press, 2007)Google Scholar
  2. 2.
    V. Brichzin, J. Fleig, H.-U. Habermeier, J. Maier, Electrochem. Solid-state Lett. 3, 403 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Bieberle, L.J. Gauckler, Solid State Ionics 146, 23 (2002)CrossRefGoogle Scholar
  4. 4.
    T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T. Kawada, T. Kato, J. Electrochem. Soc. 145, 3196 (1998)CrossRefGoogle Scholar
  5. 5.
    T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato, Solid State Ionics 127, 55 (2000)CrossRefGoogle Scholar
  6. 6.
    E. Koep, C. Compson, M. Liu, Z. Zhou, Solid State Ionics 176, 1 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Wang, M. Katsuki, M. Dokiya, T. Hashimoto, Solid State Ionics 159, 71 (2003)CrossRefGoogle Scholar
  8. 8.
    D. Waller, J.A. Lane, J.A. Kilner, B.C.H. Steele, Solid State Ionics 86–88, 767 (1996)CrossRefGoogle Scholar
  9. 9.
    A.L. Shaula, V.V. Kharton, F.M.B. Marques, J. Eur. Ceram. Soc. 24, 2631 (2004)CrossRefGoogle Scholar
  10. 10.
    L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76, 273 (1995)CrossRefGoogle Scholar
  11. 11.
    R.J. Chater, S. Carter, J.A. Kilner, B.C.H. Steele, Solid State Ionics 53–56, 859 (1992)CrossRefGoogle Scholar
  12. 12.
    J.A. Kilner, R.A. De Souza, I.C. Fullarton, Solid State Ionics 86–88, 703 (1996).CrossRefGoogle Scholar
  13. 13.
    S.J. Benson, R.J. Chater, J.A. Kilner, in Solid Oxide Fuel Cells V, ed. by H. Yokokawa, S.C. Singhal (The Electrochemical Society, PV 1997-24, Pennington, NJ 1997), p. 596Google Scholar
  14. 14.
    B.C.H. Steele, J.M. Bae, Solid State Ionics 106, 255 (1998)CrossRefGoogle Scholar
  15. 15.
    M. Prestat, PhD thesis no. 16142, ETH-Zurich, Switzerland (2006)Google Scholar
  16. 16.
    S.B. Adler, J.A. Lane, B.C.H. Steele, J. Electrochem. Soc. 143, 3554 (1996)CrossRefGoogle Scholar
  17. 17.
    D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U. Muecke, M. Prestat, J. L. M. Rupp, L. J. Gauckler, J. Power Sources, 2007 (submitted for publication)Google Scholar
  18. 18.
    J. Rupp, E. Jud, L.J. Gauckler, in Proceedings of the 6th European Solid Oxide Fuel Cell Forum, ed. By M. Mogensen (Lucerne, Switzerland, 2004), p. 1202Google Scholar
  19. 19.
    I. Kosacki, T. Suzuki, V. Petrovsky, H.U. Anderson, Solid State Ionics 136–137, 1225 (2000)CrossRefGoogle Scholar
  20. 20.
    D. Beckel, D. Briand, A. Bieberle-Hütter, J. Courbat, N. F. De Rooij, L. J. Gauckler, Power Sources, 2007 (in press)Google Scholar
  21. 21.
    D. Beckel, U. P. Muecke, T. Gyger, G. Florey, A. Infortuna, L. J. Gaukler, Solid State Ionics, 2007 (in press)Google Scholar
  22. 22.
    A. Ringuedé, .J. Fouletier, Solid State Ionics 139, 167 (2001)CrossRefGoogle Scholar
  23. 23.
    F. Baumann, J. Fleig, J. Maier, in Proceedings of the 6th European Solid Oxide Fuel Cell Forum, ed. By M. Mogensen (Lucerne, Switzerland, 2004), p. 1241Google Scholar
  24. 24.
    S. Diethlem, A. Closset, J. Van Herle, K. Nisancioglu, Electrochemistry 68, 444 (2000)Google Scholar
  25. 25.
    V.L. Kozhevnikov, I.A. Leonidov, M.V. Patrakeev, E.B. Mitberg, K.R. Poeppelmeier, J. Solid State Chem. 158, 320 (2001)CrossRefGoogle Scholar
  26. 26.
    M.S. Islam, Solid State Ionics 154–155, 75 (2002)CrossRefGoogle Scholar
  27. 27.
    M.S. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118, 125 (1995)CrossRefGoogle Scholar
  28. 28.
    L. Gavrilova, V.A. Cherepanov, in Solid Oxide Fuel Cells VI, ed. By S.C. Singhal, M. Dokiya, (The Electrochemical Society Pennington, PV 1999-19, Pennington, NJ, 1999), p. 404Google Scholar
  29. 29.
    J. Jamnik, J. Maier, J. Electrochem. Soc. 146, 4183 (1999)CrossRefGoogle Scholar
  30. 30.
    J. Jamnik, J. Maier, S. Pejovnik, Electrochim. Acta 44, 4139 (1999)CrossRefGoogle Scholar
  31. 31.
    J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 3, 1668 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michel Prestat
    • 1
  • Anna Infortuna
    • 1
  • Sybille Korrodi
    • 1
  • Samuel Rey-Mermet
    • 2
  • Paul Muralt
    • 2
  • Ludwig J. Gauckler
    • 1
  1. 1.ETH-ZurichInstitute for Nonmetallic Inorganic MaterialsZurichSwitzerland
  2. 2.Ceramics LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations