Advertisement

Journal of Electroceramics

, Volume 16, Issue 4, pp 469–472 | Cite as

Characterization of low refractive index SiOCF:H films designed to enhance the efficiency of light emission

  • S. G. Yoon
  • W. J. Park
  • H. Kim
  • S. W. Kim
  • D. H. Yoon
Section 2: Thin Film

Abstract

An anti-reflection (AR) coating was deposited on the surface of flat panel displays to increase the efficiency of the light emission. The use of low reflective index material can decrease the thickness of the optical coating layer. In this work, low refractive index SiOCF:H films were deposited on P-type (100) Si and glass substrates by the plasma enhanced chemical vapor deposition (PECVD) method using an SiH4, CF4 and N2O gas mixture. The refractive index of the SiOCF:H film continuously decreased with increasing deposition temperature and rf power, exhibiting a minimum value of 1.3854. As the rf power was increased, the fluorine content of the film increased linearly to 5.41% at an rf power of 180 W. The rms surface roughness decreased to 1.0 nm with increasing rf power, with the optimum conditions being observed for the film deposited at an rf power of 140 W.

Keywords

SiOCF:H Low refractive index PECVD Anti-reflection (AR) coating OLED 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Jangjian, C.P. Liu, Y.L. Wang, W.S. Hwang, and W.E. Tseng, Thin solid films, 469, 460 (2004).CrossRefGoogle Scholar
  2. 2.
    G.K.M. Thutupalli and C.L. Nagenda, Ind J. Phy., 63A, 661 (1989).Google Scholar
  3. 3.
    K.H. Guenther, Appl. Opt., 23, 3612 (1984).CrossRefGoogle Scholar
  4. 4.
    J.T. Cox and G. Hass, J. Opt. Soc. Am., 52, 437 (1958).Google Scholar
  5. 5.
    H. Angus Macleod, Thin Film Optical Filters third edition (Institute of Physics Publishing, 2001) Ch. 3, p. 87.Google Scholar
  6. 6.
    H.S. Moon, et al., J. Mat. Sci., 29, 3372 (1993).CrossRefGoogle Scholar
  7. 7.
    D. Ochs and B. Cord, Appl. Phys. A: Mater. Sci. Proc., 78, 637 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Ali, M. Gharghi, S. Sivoththaman, and K. Zeaiter, J. Mater. Sci., 40, 1467 (2005).CrossRefGoogle Scholar
  9. 9.
    C.S. Yang, et al., Thin Solid Films, 475, 150 (2005).CrossRefGoogle Scholar
  10. 10.
    H.J. Kim, Q. Shao and Y.H. Kim, Surface and Coatings Technology, 171, 39 (2003).CrossRefGoogle Scholar
  11. 11.
    Y.H. Kim, S.K. Lee, H.J. Kim, J. Vac. Sci. Technol., A. Vac. Surf. Films, 18, 1216 (2000).CrossRefGoogle Scholar
  12. 12.
    S.M. Yun, H.Y. Chang, M.S. Kang, and C.K. Choi, Thin Solid Films 341, 109 (1999).CrossRefGoogle Scholar
  13. 13.
    C. Rau and W. Kulisch, Thin solid films, 249, 28 (1994).CrossRefGoogle Scholar
  14. 14.
    Y. Ma, H. Yang, J. Guo, C. Sathe, A. Agui, and Nordgren, J. Appl. Phys. Lett., 72, 3353 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. G. Yoon
    • 1
  • W. J. Park
    • 1
  • H. Kim
    • 1
  • S. W. Kim
    • 2
  • D. H. Yoon
    • 1
  1. 1.Department of Advanced Materials EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.School of Advanced Materials and System EngineeringKumoh National Institute of TechnologyGyeongbukKorea

Personalised recommendations