Journal of Electroceramics

, Volume 16, Issue 4, pp 407–411 | Cite as

Effect of nano-sized TiO2 powder on Ag-electrode in piezoelectric multilayer devices

  • Soon-Jong Jeong
  • Dae-Su Lee
  • Jae-Sung Song
Section 1: Electroceramics


The objective of this study is to present sintering shrinkage behavior of Ag-Pd electrode powders with TiO2 nano-particle addition and the matching characteristics to a piezoelectric ceramics, Pb(Zr,Ti)O3. The densification of the nanoparticle TiO2-added electrode paste followed the TiO2 solid state diffusion-controlled mechanism upon sintering process. Reaction between ceramic and electrode layers with the TiO2 nano-particle powder allows internal stress to be reduced and mechanical bonding strength to be increased. High adhesive strength and good electrical conductivity of more than 104/Ω cm could be obtained in the multilayer ferroelectric structure. In order to understand the effectiveness of the nano-TiO2 doped electrode for multilayer device, the multilayer ceramic actuators containing Ag-based electrode without and with nano-sized TiO2 powder were fabricated and evaluated each other. Both the samples exhibited similar piezoelectric and dielectric properties.


Nano-sized TiO2 particle Ag-Pd electrode Sintering Adhesion Electric conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Wesing, H. Wahl, and M. Schnoller, Ferroelectrics, 87, 271 (1998).Google Scholar
  2. 2.
    C.R. Chang and J.H. Jean, J. Am. Ceram. Soc., 81, 2805 (1998).CrossRefGoogle Scholar
  3. 3.
    S.F. Wang and J.P. Dougherty, J. Am. Ceram. Soc., 77, 3051 (1994).CrossRefGoogle Scholar
  4. 4.
    J.H. Jean and C.R. Chany, J. Am. Ceram. Soc., 80, 2401 (1997).CrossRefGoogle Scholar
  5. 5.
    J. Pepin and W. Borland, J. Am. Ceram. Soc., 72, 2287 (1989).CrossRefGoogle Scholar
  6. 6.
    J.H. Jean and C.R. Chany, J. Mater. Res., 12, 2743 (1997).Google Scholar
  7. 7.
    T. Cheng and P. Raj, J. Am. Ceram. Soc., 72, 1649 (1989).CrossRefGoogle Scholar
  8. 8.
    R. Ueyama, K. Kamada, M. Harada, T. Ueyama, T. Yamamoto, K. Kuribayashi, K. Koumoto, and T. Shiosaki, J. Mater. Sci., 36, 371 (2001).CrossRefGoogle Scholar
  9. 9.
    S.J. Lee and W.M. Kriven, J. Mater. Res., 12, 411 (1997).Google Scholar
  10. 10.
    R. Zuo, L. Li, Z. Gui, X. Hu, and C. Ji, J. Am.Ceram. Soc., 85, 787 (2002).CrossRefGoogle Scholar
  11. 11.
    R.K. Bordia and R. Raj, J. Am. Ceram. Soc., 68, 287 (1985).CrossRefGoogle Scholar
  12. 12.
    J.-H. Jean and T.K. Gupta, J. Mater. Res., 7, 3342 (1992).Google Scholar
  13. 13.
    J.-H. Jean and C.-K. Chang, J. Am. Ceram. Soc., 80, 3084 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Electric and Magnetic Devices GroupKorea Electrotechnology Research InstituteChangwonSouth Korea

Personalised recommendations