Advertisement

Journal of Electroceramics

, Volume 16, Issue 4, pp 301–305 | Cite as

Morphotropic phase boundary and electrical properties of lead-free bismuth sodium lanthanum titanate—barium titanate ceramics

  • K. Pengpat
  • S. Hanphimol
  • S. Eitssayeam
  • U. Intatha
  • G. Rujijanagul
  • T. Tunkasiri
Section 1: Electroceramics

Abstract

The important properties of lead-free piezoelectric ceramics have been investigated from Bismuth Sodium Lanthanum Titanate and Barium Titanate system: (1 − y)(Bi0.5Na0.5)(1 − 1.5x)La x TiO3(BNLT)—yBaTiO3(BT) where x = 0.017 and y = 0 − 0.2, respectively. The morphotropic phase boundary (MPB) was found to be around y = 0.1 by the x-ray diffraction and dielectric measurement at various amount of BT. The temperature dependence of dielectric constant (ε r ) at various value of y showed the diffuse phase transition exhibiting the relaxor type ferroelectrics. The degree of diffuseness increased at a high doping content of about y = 0.15 where the second phase transition (T2) of the ferroelectric to antiferroelectric phase disappeared. Moreover, this sample had the maximum piezoelectric coefficient (d 33) of about 112 pC/N with relatively low dielectric constant. The optimum sintering temperatures and the microstructures of the dense BNLT-BT ceramics were also examined.

Keywords

BNLT BT Lead -free piezoelectric ceramic Conventional ceramic method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Kraink: Sov. Phys.Solid State, 2, 2651 (1961).Google Scholar
  2. 2.
    I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, and A.F. Ioffe, “Peculiarities of phase transition in bismuth sodium titanate”, Ferroelectrics, 25, 395 (1980).Google Scholar
  3. 3.
    J.V. Zvirgzds, P.P. Kapostis, and T.V. Kruzina, “X-ray study of phase transition in ferroelectric Bi0.5Na0.5TiO3,” Ferroelectrics, 40, 75 (1980).Google Scholar
  4. 4.
    K. Sakata, T. Takenaka, and Y. Naitou, Ferroelectrics, 131, 219 (1992).Google Scholar
  5. 5.
    K. Sakata and Y. Masuda, Ferroelectrics, 5, 347 (1994).Google Scholar
  6. 6.
    J. Suchanicz, J. Kusz, H. Bohm, H. Duda, J.P. Mercurio, and K. Konieczny, J. Eur. Ceram. Soc., 23, 1559 (2003).CrossRefGoogle Scholar
  7. 7.
    T. Takenaka, K. Sakata, and K. Toda, Jpn. J. Appl. Phys., 28, 59 (1989).Google Scholar
  8. 8.
    Chun Peng, Jing-Feng, and Wen Gong, Mater. Lett., In press.Google Scholar
  9. 9.
    T. Takenaka, K.-I. Maruyama, and K. Skata, Jpn. J. Appl. Phys., 30(9B), 2246 (1991).Google Scholar
  10. 10.
    K. Sakata and Y. Masuda, Ferroelectrics, 7, 347 (1974).Google Scholar
  11. 11.
    S. Said and J.P. Mercario, J. Eur. Ceram. Soc., 21, 1333 (2001).CrossRefGoogle Scholar
  12. 12.
    H.D. Li, C. Feng, and W.L. Yao, Mater. Lett., 58, 1194 (2004).CrossRefGoogle Scholar
  13. 13.
    B.J. Chu, D.R. Chen, G.R. Li, and Q.R. Yin, J. Euro. Ceram. Soc., 22, 2115 (2002).CrossRefGoogle Scholar
  14. 14.
    X.X. Wang, K.W. Kwok, X.K. Tang, H.L.W. Chan, and C.L. Choy, Solid State Comm., 129, 319 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Herabut and A. Safari, J. Am. Ceram. Soc, 80(11), 2954 (1997).CrossRefGoogle Scholar
  16. 16.
    H. Nagata and T. Takennaka, J. Euro. Ceram. Soc, 21, 1299 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • K. Pengpat
    • 1
  • S. Hanphimol
    • 1
  • S. Eitssayeam
    • 1
  • U. Intatha
    • 1
  • G. Rujijanagul
    • 1
  • T. Tunkasiri
    • 1
  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations