Journal of Electroceramics

, Volume 17, Issue 2–4, pp 339–343 | Cite as

Preparation of mono-disperse Ni powders via the reduction of hydrazine complexes: The effect of source materials and impurities

  • Kang-Min Kim
  • Jong-Heun Lee
  • Seon-Mi Yoon
  • Hyun-Chul Lee
  • Yong-Kyun Lee
  • Jae-Young Choi
1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics


Mono-disperse and spherical Ni powders were prepared using a N2H4-based solution reduction route. The main focus was on manipulating the particle size by varying the source materials (Ni-chloride, Ni-sulfate and Ni-acetate) and impurity concentrations. The morphology and size of the Ni particle closely depended on the source materials. In addition, the particle size became significantly smaller with increasing Co concentration ranging from 0 to 350 ppm. The decrease in the Ni particle size was attributed to the promotion of nucleation by the rapid decomposition of the CoCl2–N2H4 complex when adding a NaOH solution and the more active reduction of Co than that of Ni in the initial stages of the reaction.


Ni powder Reduction in solution Impurity Mono-disperse powder MLCC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kishi, Y. Mizuno, and H. Chaozono, Jpn. J. Appl. Phys., 42, 1 (2003).CrossRefGoogle Scholar
  2. 2.
    J.-Y. Lee, J.-H. Lee, S.-H. Hong, Y.K. Lee, and J.-Y. Choi, Adv. Mater., 15, 1655 (2003).CrossRefGoogle Scholar
  3. 3.
    J.-H. Hwang, V.P. Dravid, M.H. Teng, J.J. Host, B.R. Elliott, D. L. Johnson, and T.O. Mason, J. Mater. Res., 12(4), 1076 (1997).Google Scholar
  4. 4.
    S. Stopić, J. Nedeljković, S. Rakoçević, and D. Uskoković, J. Mater. Res., 14, 3059 (1999).Google Scholar
  5. 5.
    B. Xia, I.W. Lenggoro, and K. Okuyama, J. Mater. Res., 15, 2157 (2000).Google Scholar
  6. 6.
    F. Fiévet, J.P. Lagier, and M. Figlarz, MRS. Bull., 14, 29 (1989).Google Scholar
  7. 7.
    V. Viau, F. Fiévet-Vincent, and F. Fiévet, Solid State Ionics, 84, 259 (1996).CrossRefGoogle Scholar
  8. 8.
    D.-H. Chen and S.-H. Wu, Chem. Mater., 12, 1354 (2000).CrossRefGoogle Scholar
  9. 9.
    Y.D. Li, C.W. Li, H.R. Wang, L.Q. Li, and Y.T. Qian, Mater. Chem. Phys., 59, 88 (1999).CrossRefGoogle Scholar
  10. 10.
    Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, and Y. Hu, Mater. Res. Bull., 38, 169 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Gao, F. Guan, Y. Zhao, W. Yang, Y. Ma, X. Lu, J. Hou, and J. Kang, Mater. Sci. Commun., 71, 215 (2001).Google Scholar
  12. 12.
    R.S. Sapieszko and E. Matijeviç, Corrosion-Nace, 36, 522 (1980).Google Scholar
  13. 13.
    A. Degan and J. Maçek, Nanostructured Mater., 12, 225 (1999).CrossRefGoogle Scholar
  14. 14.
    J.Y. Choi, Y.-K. Lee, S.-M. Yoon, H.C. Lee, B.-K. Kim, J.M. Kim, K.-M. Kim, and J.-H. Lee, J. Am. Ceram. Soc., 88, 3020 (2005).CrossRefGoogle Scholar
  15. 15.
    A.J. Bard and L.R. Faulkner, Electrochemical methods fundamentals and applications. John Wiley & Sons, NY (1980).Google Scholar
  16. 16.
    F. Guo, H. Zheng, Z. Yang, and Y. Qian, Mater. Lett., 56, 906 (2002).CrossRefGoogle Scholar
  17. 17.
    J. McMurry and Robert C. Fay, Chemistry, 4th ed., Prentice-Hall, NJ (2004).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Kang-Min Kim
    • 1
  • Jong-Heun Lee
    • 1
  • Seon-Mi Yoon
    • 2
  • Hyun-Chul Lee
    • 2
  • Yong-Kyun Lee
    • 2
  • Jae-Young Choi
    • 2
  1. 1.Department of Materials Science & EngineeringKorea UniversitySeoulKorea
  2. 2.Materials and Devices LaboratorySamsung Advanced Institute of TechnologySuwonKorea

Personalised recommendations