Journal of Electroceramics

, Volume 17, Issue 2–4, pp 657–660 | Cite as

The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes

  • Jin-Hyon Lee
  • Young-Min Choi
  • Ungyu Paik
  • Jea-Gun Park
2. Energy: Fuel cells, batteries etc.


The effect of carboxymethyl cellulose (CMC) swelling on the stability and chemical properties of a natural graphite suspension in an aqueous medium was investigated. Suspensions prepared at different pH were characterized according to swelling behavior, rheology, green microstructural observation, and measurement of the pore size. A correlation was found between dispersion stability and electrochemical performance. It was found that the swelling of CMC was a critical factor influencing the stability of graphite suspensions. This was evidenced by observations of the green microstructures and changes noted in sedimentation behaviors. Electrochemical experiments using a Li/organic electrolyte/natural graphite anode half-cell and 750 mAh-class lithium ion cells exhibited an initial discharge capacity above 340 mAh g−1 and an improved charge-discharge efficiency.


Lithium ion battery Aqueous processing Natural graphite Swelling behavior Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Lee, S. Lee, U. Paik, and Y.M. Choi, J. Power Sources, 147, 249 (2005).CrossRefGoogle Scholar
  2. 2.
    Y.M. Choi, U. Paik, and K.H. Kim, Korean Patent Application No. P2003-0040085 (2003).Google Scholar
  3. 3.
    M.F. Chaplin and J.F. Kennedy (Eds.), Carbohydrate Analysis. A Practical Approach, 2nd Edition, Oxford University Press, Oxford, UK (1994).Google Scholar
  4. 4.
    U. Kästner, H. Hoffmann, R. Dönges, and J. Hilbig, Coll. Surf. A: Physicochem. Eng. Asp., 123–124, 307 (1997).CrossRefGoogle Scholar
  5. 5.
    R. Barbucci, A. Magnani, and M. Consumi, Macromolecules, 33, 7475 (2000).CrossRefGoogle Scholar
  6. 6.
    U. Paik, V.A. Hackley, and H.W. Lee, J. Am. Ceram. Soc., 82, 833 (1999).CrossRefGoogle Scholar
  7. 7.
    V.A. Hackley, J. Am. Ceram. Soc., 80, 2315 (1997).CrossRefGoogle Scholar
  8. 8.
    A.K. Bajpai and A. Giri, Carbohyd. Polym., 53, 271 (2003).CrossRefGoogle Scholar
  9. 9.
    P. Liu, M. Zhai, J. Li, J. Peng, and J. Wu, Radiation Physics and Chemistry, 63, 525 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Lee, U. Paik, V.A. Hackley, and Y. Choi, J. Electrochem. Soc., 152, A1763 (2005).CrossRefGoogle Scholar
  11. 11.
    D. Aurbach, in: W.A. van Schalkwijk and B. Scrosati (Eds.), Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum Publishers, NY, 2002, pp. 7–77.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jin-Hyon Lee
    • 1
  • Young-Min Choi
    • 2
  • Ungyu Paik
    • 1
  • Jea-Gun Park
    • 3
  1. 1.Division of Advanced Materials Science EngineeringHanyang UniversitySeoulKorea
  2. 2.Materials LAB, Samsung Advanced Institute of TechnologySuwonKorea
  3. 3.Nano-SOI Process LaboratoryHanyang UniversitySeoulKorea

Personalised recommendations