Advertisement

Journal of Electroceramics

, Volume 17, Issue 2–4, pp 185–188 | Cite as

Surface potential of ferroelectric domain investigated by kelvin force microscopy

  • Yunseok Kim
  • Seungbum Hong
  • Seung-Hyun Kim
  • Kwangsoo No
1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics

Abstract

We have investigated the surface potential of poled area by varying the poled size and the sign of applied voltage on 100 nm thick Pb(Zr0.25Ti0.75)O3 films grown by chemical solution deposition using Kelvin force microscopy (KFM). In the negative poled area, as the poled size increases from 300 to 4800 nm, the domain size and the KFM contrast increased in a linear way. However, in the positive poled area, the KFM contrast increased at first and then didn’t increase because of Coulomb repulsion. In two opposite poled areas, the values of the KFM contrast differed because of the internal field near the ferroelectric/electrode interface. These results imply that the surface overcharge of poled area in ferroelectric materials should be increased and the ferroelectric/electrode interface should be improved for the ultra high-density memory device.

Keywords

PZT KFM SPM Surface potential Ferroelectric domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hong, Nanoscale Phenomena in Ferroelectric Thin Films (Kluwer Academic Publishers, Boston, 2003).Google Scholar
  2. 2.
    D. Jang, J. Heo, I. Yi, and I. Chung, Jpn. J. Appl. Phys., 41, 6739 (2002).CrossRefGoogle Scholar
  3. 3.
    J.Y., Son, S.H. Bang, and J.H. Cho, Appl. Phys. Lett., 82, 3505 (2003). 0CrossRefGoogle Scholar
  4. 4.
    H. Park, J. Jung, D. Min, S. Kim, and S. Hong, Appl. Phys. Lett., 84, 1734 (2004).CrossRefGoogle Scholar
  5. 5.
    X.Q. Chen, H. Yamada, T. Horiuchi, K. Matsushige, S. Watanabe, M. Kawai, and P.S. Weiss, J. Vac. Sci. Technol. B, 17, 1930 (1999).CrossRefGoogle Scholar
  6. 6.
    A. Gruverman, A. Kholkin, A. Kingon, and H. Tokumoto, Appl. Phys. Lett., 78, 2751 (2001).CrossRefGoogle Scholar
  7. 7.
    J. Woo, S. Hong, N. Setter, H. Shin, J.-U. Jeon, Y.E. Park, and K. No, J. Vac. Sci. Technol. B, 19, 818 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Yasutake, D. Aoki, and M. Fujihira, Thin Solid Films, 273, 279 (1996).CrossRefGoogle Scholar
  9. 9.
    S.V. Kalinin, D.A. Bonnell, Phys. Rev. B, 63, 125411 (2001).CrossRefGoogle Scholar
  10. 10.
    A.V. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, and N. Setter, Integr. Ferroelectr., 22, 525 (1998).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yunseok Kim
    • 1
  • Seungbum Hong
    • 2
  • Seung-Hyun Kim
    • 3
  • Kwangsoo No
    • 1
  1. 1.Electronic and Optical Materials Laboratory, Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Nano Devices LaboratorySamsung Advanced Institute of TechnologyGyeonggi-doRepublic of Korea
  3. 3.Inostek Inc.Gyeonggi-doRepublic of Korea

Personalised recommendations