Journal of Electroceramics

, Volume 17, Issue 2–4, pp 667–671 | Cite as

A first principles investigation of new cathode materials for advanced lithium batteries

  • Young-Ah Jeon
  • Sung-Kwan Kim
  • Yang-Soo Kim
  • Dae-Hee Won
  • Byung-Il Kim
  • Kwang-Soo No
2. Energy: Fuel cells, batteries etc.


First principles calculations on the crystal and electronic structure of a layered Li(Ni1/3Mn1/3M1/3)O2 (M = Al, Ti, Cr, Fe and Mo) were undertaken as part of a search for new positive electrode materials for advanced lithium ion batteries. The formal charge of Ni, Mn and M (Ti and Mo) were estimated to be +2, +3 and +4, respectively, from electronic structures and interatomic distances. In the cases of the Al, Cr and Fe substitution, the compounds had trivalent M and tetravalent Mn ions. The solid-state redox reactions of Li(Ni1/3Mn1/3M1/3)O2 were calculated assuming a Li deinsertion scheme, and the reactions were shown to be Ni2+/Ni3+/Ni4+ and M3+/M4+ for the Cr and Fe substitution. Al substitution will lead to higher voltages, as fixed 3+ valence of Al forces more electron exchange with oxygen. The cases of Ti and Mo substitution, Ti and Ni ions do not participate in the redox reactions over the entire range, respectively. The substitutive cation-oxygen bonding has a more covalent character, when the redox energy of Ni is lowered, resulting in an increase in potential. As described above, the voltage profiles are very different because the types of metals are different and participate in electrochemical reactions according to the substituted.


First principles calculations Lithium ion batteries Li(Ni1/3Mn1/3M1/3)O2 (M = Al, Ti, Cr, Fe and Mo) Solid-state redox reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ohzuku and Y. Makimura, Chem. Lett., 744 (2001).Google Scholar
  2. 2.
    Z. Lu, D.D. MacNeil, and J. M. Rosolen, J. Electrochem. Soc., 147, 1651 (2000).Google Scholar
  3. 3.
    J.P. Zheng and T.R. Jow, J. Power Sources, 62, 155 (1996).CrossRefGoogle Scholar
  4. 4.
    Z. Lu and J.R. Dahn, J. Electrochem. Soc. 149, A815 (2002).CrossRefGoogle Scholar
  5. 5.
    K.M. Shaju, G.V. Subba Rao, and B.V.R. Chowdari, Elecrochem. Acta, 48, 1505 (2003).CrossRefGoogle Scholar
  6. 6.
    J.S. Kim, C.S. Johnson, and M.M. Thackerary, Electrochem. Commun., 4, 205 (2002).CrossRefGoogle Scholar
  7. 7.
    D.D. MacNeil, Z. Lu, and J. R. Dahn, J. Electrochem. Soc., 149, A1332 (2002).CrossRefGoogle Scholar
  8. 8.
    Y. Adachi, H. Kobayashi, S. Emura, Y. Nakata, M. Tanaka, and T. Asai, Chem. Lett., 32, 60 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Reed and G. Ceder, Electrochem. Solid-State Lett., 5, A145 (2002).CrossRefGoogle Scholar
  10. 10.
    N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003).CrossRefGoogle Scholar
  11. 11.
    J.V. McCanny, J. Phys. C, 12, 3263 (1979).CrossRefGoogle Scholar
  12. 12.
    T. Amriou et al., J. Power Sources, 130, 213 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Koksbang, J. Baker et al., Solid State Ionics, 84(1), 1 (1996).CrossRefGoogle Scholar
  14. 14.
    S.G. Youn, I.H. Lee et al., J. Power Sources, 108, 97 (2002).CrossRefGoogle Scholar
  15. 15.
    H.A. Lehmann, H. Hesselbarth et al., Allg. Chem., 313, 117 (1961).CrossRefGoogle Scholar
  16. 16.
    Y.I. Jang, B. Huang et al., Electrochem. Solid State Lett., 1, 13 (1998).CrossRefGoogle Scholar
  17. 17.
    K. Ado, M. Tabuchi, H. Kobayashi et al., J. Electrochem. Soc., 144, L177 (1997).CrossRefGoogle Scholar
  18. 18.
    F. Capitaine, P. Gravereau, and C. Damas, Solid State Ion., 89, 197 (1996).CrossRefGoogle Scholar
  19. 19.
    K.I. Pandya et al., J. Phys. Chem., 94, 21 (1990).CrossRefGoogle Scholar
  20. 20.
    A.N. Mansour, J. Phys. Chem. A., 102, 65 (1998).CrossRefGoogle Scholar
  21. 21.
    D. de Fomtaine, In: Solid State Physics, Ehrenreich, H., Turnbull, D. (Eds.), Vol. 47 (Academic Peress, New York, 1994), p. 33.Google Scholar
  22. 22.
    G. Ceser, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B. Huan, Nature, 392, 694 (1998).CrossRefGoogle Scholar
  23. 23.
    J.B. Goodenough, Gerneral Concepts, in Lithium Ion Batteries: Fundamentals and Performance, (Wiley-VCM, Weinheim, 1998).Google Scholar
  24. 24.
    G. Ceder, A. Van Der Ven et al., Minerals and Materials, 50(9), 35 (1998).Google Scholar
  25. 25.
    Y.A. Jeon, Y.S. Kim et al., Bulletin of the Society for Discrete Variational Xα, 17(1), 116 (2004).Google Scholar
  26. 26.
    M.K. Aydinol, A.F. Kohan, and G. Ceder, Phys. Rev. B., 56(3), 1354 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Young-Ah Jeon
    • 1
  • Sung-Kwan Kim
    • 1
  • Yang-Soo Kim
    • 1
  • Dae-Hee Won
    • 2
  • Byung-Il Kim
    • 2
  • Kwang-Soo No
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Fostering Project Corps of Industrial-Academic Cooperation Centered UniversitySunchon National UniversitySunchon

Personalised recommendations