Journal of Electroceramics

, Volume 17, Issue 2–4, pp 793–798 | Cite as

The effect of alumina addition on the electrical conductivity of Gd-doped ceria

  • Han Na Kim
  • Hee Jung Park
  • Gyeong Man Choi
2. Energy: Fuel cells, batteries etc.


Acceptor doped-ceria is a possible electrolyte material for the IT-SOFC (intermediate temperature solid oxide fuel cell) due to its high oxygen-ion conductivity. However, its use has been limited by its mechanical weakness and the appearance of electronic conductivity in reducing condition. In this study, alumina was selected as an additive in the doped-ceria to see if it increases the oxygen-ion conductivity and mechanical strength. Effects of alumina addition in doped ceria were studied as a function of alumina content and acceptor (Gd) content.

The electrical conductivity of (Ce1−x Gd x O2−δ)1−y + (Al2O3) y (x = 0–0.35, y = 0–0.10) was measured by using impedance spectroscopy. The grain conductivity of Ce0.8Gd0.2O2-δ (GDC20) with 5 mol% alumina increased ∼3 times from that of GDC20 at 300C. The grain conductivity was even ∼2 times higher than that of Ce0.9Gd0.1O2−δ (GDC10) at 300C. The electrical conductivity of GDC20 without alumina addition, measured at 500C in air, rapidly decreased after exposure to reducing condition (Po2∼10−22 atm) at 800C. However, the decrease was much slower in GDC20 with alumina addition, indicating the improved mechanical strength.

Among the examined compositions, (Ce0.75Gd0.25 O2-δ)0.95 + (Al2O3)0.05 (GDC25A5) showed the highest conductivity at most temperatures.


Gd-doped ceria Al2O3 addition Electrical conductivity Mechanical strength Solid electrolyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells (Elsevier Science, Amsterdam, 1995) p. 1.Google Scholar
  2. 2.
    R.M. Dell and A. Hooper, Solid Electrolyte (Academic Press, 1978) p. 298.Google Scholar
  3. 3.
    T. Kudo and H. Obayashi, J. Electrochem. Soc., 123, 415 (1976).CrossRefGoogle Scholar
  4. 4.
    T. Ishihara, H. Matsuda, and Y. Takita, Solid State Ionics, 147 (1995).Google Scholar
  5. 5.
    M. Breysse, M. Guenin, B. Claudel, H. Latreille, and J. Veron, J. Catalysis, 27, 275 (1972).CrossRefGoogle Scholar
  6. 6.
    H. Inaba and H. Tagawa, Solid State Ionics, 83, 1 (1996).CrossRefGoogle Scholar
  7. 7.
    H.L. Tuller and A.S. Nowick, J. Electrochem. Soc., 122, 255 (1975).CrossRefGoogle Scholar
  8. 8.
    A. Atkinson, Solid State Ionics, 95, 249 (1997).CrossRefGoogle Scholar
  9. 9.
    J.S. Lee, K.H. Choi, B.K. Ryu, B.C. Shin, and I.S. Kim, Ceramic International, 30, 807 (2004).CrossRefGoogle Scholar
  10. 10.
    A. Atkinson and A. Selquk, Solid State Ionics, 134, 59 (2000).CrossRefGoogle Scholar
  11. 11.
    B. Cales and J.F. Baumard, Rev. Int. Hautes Temper. Refract., 17, 137 (1980).Google Scholar
  12. 12.
    M. Mori. T. Itoh, O. Yamamoto, Y. Takeda, and T. Kawahara, Solid State Ionics, 74, 157 (1994).CrossRefGoogle Scholar
  13. 13.
    T. Yamana and S. Nakamura, Solid State Ionics, 763, 53–56 (1992).Google Scholar
  14. 14.
    T. Zhang, Z. Zeng, H. Huang, P. Hing, and J. Kilner, Materials Letters, 57, 124 (2002).CrossRefGoogle Scholar
  15. 15.
    A. Rizea, D. chirlesan, C. Petot, and G.P. Ervas, Solid State Ionics, 146, 341 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Miyayama, H. Yanagida, and A. Asada, Am. Ceram. Soc. Bull., 64, 660 (1985).Google Scholar
  17. 17.
    B. Kumar, C. Chen, C. Varanasi, and J.P. Fellner, Journal of Power Sources, 140, 12 (2005).CrossRefGoogle Scholar
  18. 18.
    A.J. Feighery and J.T.S. Irvine, Solid State Ionics, 121, 209 (1999).CrossRefGoogle Scholar
  19. 19.
    S. Lubke and H.D. Wiemhofer, Solid State Ionics, 117, 229 (1999).CrossRefGoogle Scholar
  20. 20.
    S.R. Hui, J. Roller, X. Zhang, C.D. Petit, and Y. Xie, Solid Oxide Fuel Cells 4, edited by S.C. Singhal (The Electrochem. Soc. Inc., Pennington, 2005) p. 964.Google Scholar
  21. 21.
    T. Yoshimura and K. Ina, Solid State Ionics, 53, 763 (1992).CrossRefGoogle Scholar
  22. 22.
    C.R.A. Catlow, Solid State Ionics, 12, 67 (1984).CrossRefGoogle Scholar
  23. 23.
    D.J. Kim, J. Am. Ceram. Soc., 72, 1415 (1989).CrossRefGoogle Scholar
  24. 24.
    M.M. Bucko, J. Euro. Cera. Soc., 24, 1305 (2004).CrossRefGoogle Scholar
  25. 25.
    H. Yoshida, H. Deguchi, and T. Inagaki, Solid State Ionics, 140, 191 (2001).CrossRefGoogle Scholar
  26. 26.
    T. Mori, J. Drennan, J.H. Lee, J.G. Li, and T. Ikegami, Solid State Ionics, 154, 461 (2002).CrossRefGoogle Scholar
  27. 27.
    H. Yoshida, T. Inagaki, K. Miura, and Z. Ogumi, Solid State Ionics, 160, 109 (2003).CrossRefGoogle Scholar
  28. 28.
    X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Materials Sci. and Eng., A335, 246 (2002).CrossRefGoogle Scholar
  29. 29.
    G.M. Christie and F.P.F. Berkel, Solid State Ionics, 83, 17 (1996).CrossRefGoogle Scholar
  30. 30.
    C. Haavik, E.M. Ottesen, K. Nomura, J.A. Kilner, and T. Norby, Solid State Ionics, 174, 233 (2004).CrossRefGoogle Scholar
  31. 31.
    Z. Shao, S. Haile, J. Ahn, P.D. Ronney, Z. Zhan, and S.A. Barnett, Nature, 435, 795 (2005).CrossRefGoogle Scholar
  32. 32.
    B. Frankhanel, E. Muller, U. Mosler, and W. Siegel, J. European Cer. Soc., 21, 649 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Fuel Cell Research Center and Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations