Skip to main content
Log in

The effect of alumina addition on the electrical conductivity of Gd-doped ceria

  • 2. Energy: Fuel cells, batteries etc.
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Acceptor doped-ceria is a possible electrolyte material for the IT-SOFC (intermediate temperature solid oxide fuel cell) due to its high oxygen-ion conductivity. However, its use has been limited by its mechanical weakness and the appearance of electronic conductivity in reducing condition. In this study, alumina was selected as an additive in the doped-ceria to see if it increases the oxygen-ion conductivity and mechanical strength. Effects of alumina addition in doped ceria were studied as a function of alumina content and acceptor (Gd) content.

The electrical conductivity of (Ce1−x Gd x O2−δ)1−y + (Al2O3) y (x = 0–0.35, y = 0–0.10) was measured by using impedance spectroscopy. The grain conductivity of Ce0.8Gd0.2O2-δ (GDC20) with 5 mol% alumina increased ∼3 times from that of GDC20 at 300C. The grain conductivity was even ∼2 times higher than that of Ce0.9Gd0.1O2−δ (GDC10) at 300C. The electrical conductivity of GDC20 without alumina addition, measured at 500C in air, rapidly decreased after exposure to reducing condition (Po2∼10−22 atm) at 800C. However, the decrease was much slower in GDC20 with alumina addition, indicating the improved mechanical strength.

Among the examined compositions, (Ce0.75Gd0.25 O2-δ)0.95 + (Al2O3)0.05 (GDC25A5) showed the highest conductivity at most temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells (Elsevier Science, Amsterdam, 1995) p. 1.

    Google Scholar 

  2. R.M. Dell and A. Hooper, Solid Electrolyte (Academic Press, 1978) p. 298.

  3. T. Kudo and H. Obayashi, J. Electrochem. Soc., 123, 415 (1976).

    Article  CAS  Google Scholar 

  4. T. Ishihara, H. Matsuda, and Y. Takita, Solid State Ionics, 147 (1995).

  5. M. Breysse, M. Guenin, B. Claudel, H. Latreille, and J. Veron, J. Catalysis, 27, 275 (1972).

    Article  CAS  Google Scholar 

  6. H. Inaba and H. Tagawa, Solid State Ionics, 83, 1 (1996).

    Article  CAS  Google Scholar 

  7. H.L. Tuller and A.S. Nowick, J. Electrochem. Soc., 122, 255 (1975).

    Article  CAS  Google Scholar 

  8. A. Atkinson, Solid State Ionics, 95, 249 (1997).

    Article  CAS  Google Scholar 

  9. J.S. Lee, K.H. Choi, B.K. Ryu, B.C. Shin, and I.S. Kim, Ceramic International, 30, 807 (2004).

    Article  CAS  Google Scholar 

  10. A. Atkinson and A. Selquk, Solid State Ionics, 134, 59 (2000).

    Article  CAS  Google Scholar 

  11. B. Cales and J.F. Baumard, Rev. Int. Hautes Temper. Refract., 17, 137 (1980).

    CAS  Google Scholar 

  12. M. Mori. T. Itoh, O. Yamamoto, Y. Takeda, and T. Kawahara, Solid State Ionics, 74, 157 (1994).

    Article  CAS  Google Scholar 

  13. T. Yamana and S. Nakamura, Solid State Ionics, 763, 53–56 (1992).

    Google Scholar 

  14. T. Zhang, Z. Zeng, H. Huang, P. Hing, and J. Kilner, Materials Letters, 57, 124 (2002).

    Article  CAS  Google Scholar 

  15. A. Rizea, D. chirlesan, C. Petot, and G.P. Ervas, Solid State Ionics, 146, 341 (2002).

    Article  CAS  Google Scholar 

  16. M. Miyayama, H. Yanagida, and A. Asada, Am. Ceram. Soc. Bull., 64, 660 (1985).

    Google Scholar 

  17. B. Kumar, C. Chen, C. Varanasi, and J.P. Fellner, Journal of Power Sources, 140, 12 (2005).

    Article  CAS  Google Scholar 

  18. A.J. Feighery and J.T.S. Irvine, Solid State Ionics, 121, 209 (1999).

    Article  CAS  Google Scholar 

  19. S. Lubke and H.D. Wiemhofer, Solid State Ionics, 117, 229 (1999).

    Article  CAS  Google Scholar 

  20. S.R. Hui, J. Roller, X. Zhang, C.D. Petit, and Y. Xie, Solid Oxide Fuel Cells 4, edited by S.C. Singhal (The Electrochem. Soc. Inc., Pennington, 2005) p. 964.

    Google Scholar 

  21. T. Yoshimura and K. Ina, Solid State Ionics, 53, 763 (1992).

    Article  Google Scholar 

  22. C.R.A. Catlow, Solid State Ionics, 12, 67 (1984).

    Article  CAS  Google Scholar 

  23. D.J. Kim, J. Am. Ceram. Soc., 72, 1415 (1989).

    Article  CAS  Google Scholar 

  24. M.M. Bucko, J. Euro. Cera. Soc., 24, 1305 (2004).

    Article  CAS  Google Scholar 

  25. H. Yoshida, H. Deguchi, and T. Inagaki, Solid State Ionics, 140, 191 (2001).

    Article  CAS  Google Scholar 

  26. T. Mori, J. Drennan, J.H. Lee, J.G. Li, and T. Ikegami, Solid State Ionics, 154, 461 (2002).

    Article  Google Scholar 

  27. H. Yoshida, T. Inagaki, K. Miura, and Z. Ogumi, Solid State Ionics, 160, 109 (2003).

    Article  CAS  Google Scholar 

  28. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Materials Sci. and Eng., A335, 246 (2002).

    Article  Google Scholar 

  29. G.M. Christie and F.P.F. Berkel, Solid State Ionics, 83, 17 (1996).

    Article  CAS  Google Scholar 

  30. C. Haavik, E.M. Ottesen, K. Nomura, J.A. Kilner, and T. Norby, Solid State Ionics, 174, 233 (2004).

    Article  CAS  Google Scholar 

  31. Z. Shao, S. Haile, J. Ahn, P.D. Ronney, Z. Zhan, and S.A. Barnett, Nature, 435, 795 (2005).

    Article  CAS  Google Scholar 

  32. B. Frankhanel, E. Muller, U. Mosler, and W. Siegel, J. European Cer. Soc., 21, 649 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong Man Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.N., Park, H.J. & Choi, G.M. The effect of alumina addition on the electrical conductivity of Gd-doped ceria. J Electroceram 17, 793–798 (2006). https://doi.org/10.1007/s10832-006-7000-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-7000-2

Keywords

Navigation