Journal of Electroceramics

, Volume 17, Issue 2–4, pp 799–803 | Cite as

Optical Properties of LiTaO3 Thin films crystallized by RTA processes

2. Energy: Fuel cells, batteries etc.


High-performance pyroelectric infrared detectors have been fabricated using Lithium tantalite (LiTaO3) thin films deposited on Pt(111)/Ti/SiO2/Si(100) substrates by diol-based sol-gel method and rapid thermal annealing (RTA) technique. The dielectric and pyroelectric properties of IR detectors of LiTaO3 thin films crystallized by conventional and RTA processes are investigated. Experimental results reveal that the heating rate will influence strongly on dielectricity and pyroelectricity of LiTaO3 thin films. The voltage responsivities (Rv) measured at 80 Hz increase from 5496 to 8455 V/W and the specific detecivities (D) measured at 300 Hz increase from 1.94 × 108 to 2.38 × 108 cmHz1/2/W with an increase of heating rate from 600 to 1800C/min. However, the voltage responsivity and the specific detecivity decrease with heating rate in excess of 1800C/min. The results show that the LiTaO3 thin film detector with a heating rate of 1800C/min exists both the maximums of voltage responsivity and specific detecivity.


LiTaO3 Infrared detectors RTA Voltage responsivity Specific detecivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Whatmore, Rep. Prog. Phys., 49, 1335 (1986).CrossRefGoogle Scholar
  2. 2.
    R. Takayama, Y. Tomita, K. Iijima, and I. Ueda, J. Appl. Phys., 61, 411 (1987).CrossRefGoogle Scholar
  3. 3.
    R. Takayama, Y. Tomita, K. Iijima, and I. Ueda, J. Appl. Phys., 63, 5868 (1988).CrossRefGoogle Scholar
  4. 4.
    D.L. Polla, C.P. Ye, and T. Tamagawa, Appl. Phys. Lett., 59, 3539 (1991).CrossRefGoogle Scholar
  5. 5.
    D.H. Lee, J.S. Lee, S.M. Cho, H.J. Nam, J.H. Lee, J.R. Choi, K.Y. Kim, S.T. Kim, and M. Okuyama, Jpn. J. Appl. Phys., 34, 2453 (1995).CrossRefGoogle Scholar
  6. 6.
    A. Rauber, Current Topics in Materials Science (North-Holland, Amsterdam, 1978).Google Scholar
  7. 7.
    W.S. Hu, Z.G. Liu, and D. Feng, Solid State commun., 97, 481 (1996).CrossRefGoogle Scholar
  8. 8.
    W.S. Hu, Z.G. Liu, and D. Feng, J. Appl. Phys., 80, 7089 (1996).CrossRefGoogle Scholar
  9. 9.
    W.S. Hu, Z.G. Liu, Y.-Q. Lu, S.N. Zhu, and D. Feng, Opt. Lett., 21, 946 (1996).CrossRefGoogle Scholar
  10. 10.
    Y. Kuwano, T. Yokoo, and K. Shibata, Jpn. J. Appl. Phys., 20, 221 (1981).CrossRefGoogle Scholar
  11. 11.
    M.C. Kao, H.Z. Chen, C.M. Wang, Y.C. Chen, and M.S. Lee, Appl. Phys., A79, 103 (2004).Google Scholar
  12. 12.
    S.D. Cheng, C.H. Kam, Y. Zhou, Y.L. Lam, Y.C.C.K. Pita, and W.S. Gan, Ferroelectricsn, 232, 979 (1999).Google Scholar
  13. 13.
    T.A. Deis and P.P. Phule, J., Mater. Sci., 11, 1353 (1992).Google Scholar
  14. 14.
    R.L. Byer and C.B. Roundy, IEEE Trans. Sonics Ultrason., 19, 333 (1972).Google Scholar
  15. 15.
    R.W. Whatmore, P.C. Osbond, and N.M. Shorrocks, Ferroelectrics, 76, 351 (1987).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Electrical EngineeringHsiuping Institute of TechnologyTaichungROC

Personalised recommendations