Journal of Electroceramics

, Volume 17, Issue 2–4, pp 119–123 | Cite as

Strong thickness dependence of aurivillius phase formation in SrBi2Ta2O9 thin films

  • Yun-Mo Sung
  • Woo-Chul Kwak
  • Se-Yeon Jung
  • Jung-Joon Na
  • Sang M. Park
1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics


Sr0.7Bi2.4Ta2O9 (SBT) thin films were studied for the dependence of Aurivillius phase formation kinetics on their film thickness. SBT thin films were fabricated using a sol-gel process and spin coating, and their thickness was varied controlling the number of spin coating. The films were first heated at a low temperature for the complete crystallization of amorphous film to fluorite phase and then further heated at different elevated temperatures for the phase transformation to Aurivillius for 40 min. It was found that the phase transformation kinetics apparently increased with thickness up to ∼390 nm, and then it sharply decreased at higher values. The Aurivillius crystal size decreased and the density of crystals increased with the increase of film thickness up to ∼390 nm, implying increasing number of nuclei due to the reduced energy barrier for nucleation. Above the critical value both the size and density of crystals decreased. It is suggested that up to ∼390 nm the tensile strain energy in the films, which was stored by the shrinkage of thin films during the removal of remaining organic components from sol-gel chemistry, plays a major role for determining the phase transformation kinetics and above the critical value SBT films act as a free bulk material without substrate constraints.


SBT Ferroelectric Thin films Phase transformation Thickness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A.P. Arauju, J.D. Cuchiaro, L.D. McMillan, and M.C. Scott, J. F. Scott, Nature, 347, 627 (1995).CrossRefGoogle Scholar
  2. 2.
    K. Kato, C. Zheng, J.M. Finder, and S.K. Dey, J. Am. Ceram. Soc., 81, 1869 (1998).CrossRefGoogle Scholar
  3. 3.
    Q.F. Zhou, H.L.W. Chan, and L.L. Choy, J. Non-Cryst. Solids, 254, 106 (1999).CrossRefGoogle Scholar
  4. 4.
    T.J. Boyle, C.D. Buchheit, M.A. Rodigruez, H.N. Al-Shareef, B.A. Hernandez, B. Schoot, and J.W. Ziller, J. Mater. Res., 11, 2274 (1996).Google Scholar
  5. 5.
    S. Tirumala, A.C. Rastogi, and S.B. Desu, J. Electroceram, 5, 7 (2000).CrossRefGoogle Scholar
  6. 6.
    Y.-M. Sung, G.M. Anilkumar, and S.-J. Hwang, J. Mater. Res., 18, 387 (2003).Google Scholar
  7. 7.
    Y-M. Sung, Cryst. Growth Design, 4, 325 (2004).CrossRefGoogle Scholar
  8. 8.
    J.P. Han, S.M. Koo, and C.A. Richter, Appl. Phys. Lett., 85, 1439 (2004).CrossRefGoogle Scholar
  9. 9.
    J. Ricote, M.L. Calzada, A. Gonzlez, and C. Ocal, J. Am. Ceram. Soc., 87, 138 (2004).CrossRefGoogle Scholar
  10. 10.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phy. Lett., 74, 1904 (1999).CrossRefGoogle Scholar
  11. 11.
    K. Uchiyama, K. Tanaka, Y. Shimada, M. Azuma, T. Otsuki, S. Narayan, V. Joshi, C.A.P. De Araujo, and L.D. McMillan, Integr. Ferroelectr, 36, 119 (2001).Google Scholar
  12. 12.
    K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J.F. Scott, Appl. Phys. Lett., 73, 126 (1998).CrossRefGoogle Scholar
  13. 13.
    M. Tanaka, K. Watanabe, K. Katori, H. Yamamoto, and H. Yugi, Mater. Res. Bull., 33, 789 (1998).CrossRefGoogle Scholar
  14. 14.
    J. Celinska, V. Joshi, S. Narayan, L.D. McMillan, and C.A.P. De Araujo, Integr. Ferroelectr, 30, 1 (2000).Google Scholar
  15. 15.
    W.-C. Kwak and Y.-M. Sung, J. Mater. Res., 17, 1463 (2002).Google Scholar
  16. 16.
    S.-Y. Jung, S.-J. Hwang, and Y.-M. Sung, J. Mater. Res., 18, 1745 (2003).Google Scholar
  17. 17.
    H.K. Schmid, J. Am. Ceram. Soc., 70, 1367 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Moon, J.A. Kerchner, J. Lebleu, A.A. Morrone, and J.H. Adair, J. Am. Ceram. Soc., 80, 2613 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yun-Mo Sung
    • 1
  • Woo-Chul Kwak
    • 2
  • Se-Yeon Jung
    • 2
  • Jung-Joon Na
    • 3
  • Sang M. Park
    • 4
  1. 1.Department of Material Science & EngineeringKorea UniversitySeoulKorea (South)
  2. 2.Department of Materials Science & EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Materials Science & EngineeringDaejin UniversityKyunggi-doKorea (South)
  4. 4.Department of Chemical & Environmental EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations