Advertisement

Journal of Electroceramics

, Volume 16, Issue 1, pp 41–47 | Cite as

Corrosion performance of lamellae nanostructured fluorinated organic coating applied on steel

  • V. Roche
  • F. Vacandio
  • D. Bertin
  • Y. Massiani
Article

Abstract

This work investigates a new organic coating for corrosion protection. This coating is a Poly(n-butyl acrylate-b-trifluoroethyl methacrylate) diblock copolymer elaborated by Controlled Radical Polymerization and then deposited on steel. Several parameters were taken into account to evaluate their influence on corrosion protection properties: the PBA molar mass, the solvent type (THF or Dichloromethane), the thickness of coatings and the nature of the nanostructuration (lamellae or sphere). The thickness of the films was measured between 45 and 265 μm by optical microscopy and by gravimetric difference measurements. Atomic Force Microscopy (AFM) observations show a homogeneous surface of the coating with a nanostructured lamellar structure. The electrochemical behaviour was studied by Electrochemical Impedance Spectroscopy (EIS) in a sodium sulphate solution. The better corrosion resistance was obtained for coating thickness higher than 265 μm. On the other hand, poor results were obtained using a PBA high molar mass and dichloromethane as solvent.

Keywords

Diblock copolymers Controlled radical polymerisation Nanostructuration Corrosion Electrochemical characterisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Determination of coating performance with impedance measurements, TNO Centre for Coatings Research Delft, The Netherlands, (1992).Google Scholar
  2. 2.
    N.S. Sangaj and V.C. Malshe, Progress in Organic Coatings, 50, 28 (2004).CrossRefGoogle Scholar
  3. 3.
    C.M. Hansen, Progress in Organic Coatings, 51, 55 (2004).CrossRefGoogle Scholar
  4. 4.
    C. K. Schoff, Progress in Organic Coatings, (2004).Google Scholar
  5. 5.
    L.H. Sperling, Introduction to Physical Polymer Science, 2nd Edition, J. Wiley & Sons, (1992), Chapter 4.Google Scholar
  6. 6.
    I.W. Hamley, The Physics of Block Copolymers, ed. Oxford Science Publications, (1998), Chapter 2.Google Scholar
  7. 7.
    D. Bertin, M. Destarac, B. Boutevin, Polymers and Surfaces, 47 (1998).Google Scholar
  8. 8.
    P.L. Bonora, F. Deflorian, and L. Fedrizzi, Electrochimica Acta, 41, 1073 (1996).CrossRefGoogle Scholar
  9. 9.
    F. Deflorian, L. Fedrizzi, S. Rossi, and P.L. Bonora, Electrochimica Acta, 44, 4243 (1999).CrossRefGoogle Scholar
  10. 10.
    Z. Kloek, Progress in Organic Coatings, 30, 287 (1997).CrossRefGoogle Scholar
  11. 11.
    F. Deflorian, L. Fedrizzi, S. Rossi, F. Buratti, and P.L. Bonora, Progress in Organic Coatings, 39, 9 (2000).CrossRefGoogle Scholar
  12. 12.
    T. To, H. Wang, A.B. Djurisic, M.H. Xie, W.K. Chan, Z. Xie, C. Wu, S.Y. Tong, Thin Solid Films, 467, 59 (2004).CrossRefGoogle Scholar
  13. 13.
    D.M. Brasher and A.H. Kingsbury, J. Appl. Chem., 4, 62 (1954).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • V. Roche
    • 1
    • 2
  • F. Vacandio
    • 1
  • D. Bertin
    • 2
  • Y. Massiani
    • 1
  1. 1.Laboratoire MADIRELUMR 6121 CNRS-Université de ProvenceMarseille Cedex 20France
  2. 2.Laboratoire CBRLUMR 6517 CNRS-Universités d'Aix-Marseille I et IIIMarseille Cedex 20France

Personalised recommendations