Journal of Electroceramics

, Volume 15, Issue 3, pp 209–214 | Cite as

Microwave Dielectric Characteristics of MgTiO3/CaTiO3 Layered Ceramics

  • L. Li
  • X. M. Chen
  • X. C. Fan


MgTiO3/CaTiO3 layered ceramics with differently stacking were fabricated and the microwave dielectric properties were evaluated with TE011 mode. With increasing CaTiO3 thickness fraction, the resonant frequency decreased and the dielectric constant increased with a near-linear relation for the bi-layer ceramics, while the values of the tri-layer MgTiO3/CaTiO3/MgTiO3 ceramics with thickness ratio of 1:1:1 derived much from the curves of the bi-layer ceramics. The finite element method was used to give an explanation for the differences between the bi-layer and tri-layer ceramics.


MgTiO3 CaTiO3 layered ceramics microwave dielectric properties finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Freer, Silic. Ind., 58, 191 (1993).Google Scholar
  2. 2.
    W. Wersing, Curr. Opin. Solid State Mater. Sci., 1, 715 (1996).Google Scholar
  3. 3.
    M.P. Seabra, A.N. Salak, V.M. Ferreiraa, J.L. Ribeiro, and L.G. Vieira, J. Euro. Ceram. Soc., 24, 2995 (2004).CrossRefGoogle Scholar
  4. 4.
    E.S. Kim and K.H. Yoon, J. Euro. Ceram. Soc., 23, 2397 (2003).Google Scholar
  5. 5.
    M.E. Tobar, J. Krupka, E.N. Ivanov, and R.A. Woode, J. Phys. D: Appl. Phys., 30, 2770 (1997).CrossRefGoogle Scholar
  6. 6.
    J. Breeze, S.J. Penn, M. Poole, and N. McN. Alford, Elect. Lett., 36, 883 (2000).CrossRefGoogle Scholar
  7. 7.
    M.E. Tobar, J.G. Hartnett, E.N. Ivanov, D. Cros, P. Blondy, and P. Guillon, IEEE Trans. Microwave Theory Tech., 48, 1265 (2000).Google Scholar
  8. 8.
    M.T. Sebastian, I.N. Jawahar, and P. Mohanan, Mater. Sci. Eng., B97, 258 (2003).Google Scholar
  9. 9.
    M. Sagawa, M. Makimoto, and S. Yamashita, IEEE Trans. Microwave Theory Tech., 45, 1078 (1997).Google Scholar
  10. 10.
    J.Y. Cho, K.H. Yoon, and E.S. Kim, Jpn. J. Appl. Phys., 41, 4601 (2002).Google Scholar
  11. 11.
    J.Y. Cho, K.H. Yoon, and E.S. Kim, Mater. Chem. Phys., 79, 286 (2003).Google Scholar
  12. 12.
    J.Y. Cho, K.H. Yoon, and E.S. Kim, J. Am. Ceram. Soc., 86, 1330 (2003).Google Scholar
  13. 13.
    L. Li and X.M. Chen, Mater. Sci. Eng., B99, 255 (2003).Google Scholar
  14. 14.
    B.W. Hakki and P.D. Coleman, IEEE Trans. Microwave Theory Tech., 8, 402(1960).Google Scholar
  15. 15.
    P.S. Kooi, M.S. Leong, and A.L.S. Prakash, IEE Proc., 132, 7 (1985).Google Scholar
  16. 16.
    Y.G. Zeng, G.H. Xu, and G.X. Song, Electromagnetic Field Finite Element Method (Science Press, Beijing, 1982).Google Scholar
  17. 17.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (2nd Edition) (John Wiley & Sons, New York, 1976).Google Scholar
  18. 18.
    D. Kajfez and P. Guillon, Dielectric Resonators (2nd edition), (Noble Publishing Corporation, Atlanta, 1998).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • L. Li
    • 1
  • X. M. Chen
    • 1
  • X. C. Fan
    • 1
  1. 1.Department of Materials Science & EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations